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Abstract

This Paper continues the study of the Optimal Consumption Function in a Brown-
ian Model of Accumulation, see Part A, Foldes [2001] and Part B, Foldes [2014].
It is shown here that the sets M. and M/ of forward and backward ‘special’
solutions of the system S are C1 sub-manifolds of <3, hence that the functions
f(θ, Z♦) and g(θ, Z♦) defined in Part B are continuously differentiable.

The argument involves the construction of an imbedding of the systems S and
S±∞ into a three-dimensional autonomous system S such that the saddle points
π∗±∞ of S±∞ are mapped to saddle points p∗±∞ of S andM. andM/ are mapped
into differentiable manifolds M. and M/ (respectively ‘stable’ at p∗∞ and ‘unstable’
at p∗−∞). This procedure permits application of the usual Stable/Unstable Man-
ifold Theorems for stationary points to obtain the required C1 properties. The
‘connection in S’ between π∗−∞ and π∗∞ then corresponds to a saddle connection
between p∗−∞ and p∗∞ in S. A stability result for the saddle connection is given
for a special case.
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Introduction to Part C

This paper resumes the study of the Optimal Consumption Function in a Brownian

Model of Accumulation begun in Foldes [2001], hereinafter Part A or simply [A], com-

prising Sections 1 and 2 of our study, and Foldes [2014], hereinafter Part B or simply

[B], comprising an Introduction, Sections 3 and 4, and Figures.

In Part A, we formulated a Brownian model of accumulation and derived sufficient

conditions for optimality of a plan generated by a logarithmic consumption function,

i.e. a relation expressing log-consumption ln C̄ as a time invariant, deterministic function

H(Z) of log-capital Z for Z ∈ < (both variables being measured in ‘intensive’ units).

Writing

h(Z) = H ′(Z), θ(Z) = exp{H(Z)− Z},

the sufficient conditions require that the pair (h, θ) satisfy a certain non-linear, non-

autonomous system of o.d.e.s S = (F,G) of the form

h′(Z) = F (h, θ, Z), θ′ = G(h, θ) = (h− 1)θ

defined for Z ∈ < and (h, θ) in a suitable domain U ⊆ <2 — usually {h ∈ <, θ ≥ 0},
{h ∈ <, θ > 0} or {h > 0, θ > 0} — and that h(Z) and θ(Z) converge to certain

limiting values (depending on parameters) as z → ∞ and as z → −∞. The system S

is asymptotically autonomous as z → ∞ and as z → −∞ with limiting autonomous

systems S∞ = [F∞, G] and S−∞ = (F−∞, G), where F±∞(h, θ) = F (h, θ,±∞), and it

was found that the appropriate limiting values for (h, θ) are defined by saddle points

π∗∞ = (h∗∞, θ
∗
∞) and π∗−∞ = (h∗−∞, θ

∗
−∞)

of the systems S∞ and S−∞; see [B] Prop.5 and Table I, also Section 5(ii) below. It was

shown in Part B that (for each set of parameter values consistent with our Standing

Assumptions) the resulting bilateral boundary value problem (b.v.p.) has a unique

solution

φ∗(Z) = (h∗(Z), θ∗(Z) : Z ∈ <),

and hence that there exists a log-consumption function

H∗ = (H∗(Z) : Z ∈ <)

generating an optimal plan.
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The solution of the b.v.p. may be characterised loosely as the ‘connection in S’

between the saddle points of the systems S∞ and S−∞, determined by the intersection

of an ‘in-set’M. at π∗∞, comprising points (h, θ, Z) with h > 0, θ > 0 which are ‘forward

starts’ of solutions of S converging to π∗∞ as Z → ∞, and an ‘out-set’ M/ at π∗−∞,

comprising points (h, θ, Z) with h > 0, θ > 0 which are ‘backward starts’ of solutions of

S converging to π∗−∞ as Z → −∞. Specifically, it was shown that, for a suitable fixed Z♦,

the sectionM.(Z♦) is the graph of a function h = f(θ, Z♦) which is defined, continuous

and decreasing in θ on an interval (0, θ+(Z♦)), while the sectionM/(Z♦) is the graph of

a function h = g(θ, Z♦) which is defined, continuous and increasing in θ on an interval

(θ−(Z♦),∞). For each admissible set of parameter values and suitably chosen Z♦, the

graphs are so situated that there is a point

π∗(Z♦) = (h∗(Z♦), θ∗(Z♦))

satisfying θ−(Z♦) < θ∗(Z♦) < θ+(Z♦) and

h∗(Z♦) = f [θ∗(Z♦), Z♦] = g[θ∗(Z♦), Z♦],

so that the solution of S satisfying the initial value problem (i.v.p.) through this point

yields the solution φ∗ of the b.v.p.

In Part B, the Stable/Unstable Manifold Theorems for stationary points, as usually

stated, were not applicable because S is not autonomous and π∗±∞ are not saddle points

of S but of S±∞. (In fact, apart from degenerate cases, S has no stationary points.) The

existence proof presented did not show thatM. andM/ are differentiable manifolds, and

the representing functions for fixed Z♦, f and g, were shown only to be continuous and

monotonic in θ, rather than C1 in (h, θ, Z). The present Part C reformulates the b.v.p.

to avoid these limitations, although at the cost of a slight restriction on the production

function in the underlying growth model. We construct an imbedding of the systems S

and S±∞ into a three-dimensional autonomous system S such that π∗±∞ are mapped to

saddle points p∗±∞ of S, M. and M/ are mapped into differentiable manifolds M.and

M/ (respectively ‘stable’ at p∗∞ and ‘unstable’ at p∗−∞), and the solution of the b.v.p.

corresponds to a saddle connection in S. Differentiability of the manifolds will be needed

in Part D for the investigation of the effect upon optimal consumption of perturbations

of parameters of the growth model. Also, use of Stable Manifold Theory yields new

approximations to the optimal consumption function when |Z| is large (i.e. when the

economy is very rich or very poor).

iii



5. Review of the Model

As indicated above, the main aim of the present Part C is to extend the proof of the

existence of an optimal logarithmic consumption function to the setting of a three-

dimensional autonomous dynamical system S. The argument will rely on various results

from previous Parts, relating in particular to geometric properties of solutions of S and

S±∞, and proofs of these results will usually not be repeated. However, in order to limit

cross-reference and to facilitate comparisons, we begin here by recalling some definitions

and results, adding or modifying details where necessary. These particulars will also be

required for Part D.

(i) Recapitulation and Modification of the system S.

As in [B](0.1), we consider the system S = (F,G) of o.d.e.s

h′ = F (h, θ, Z) = bh2 + (2/σ2)h[θ − n+m/b− 1

2
bσ2 − A]− 2[m−M ]/bσ2(5.1)

θ′ = G(h, θ, Z) = (h− 1)θ

defined for Z ∈ < and (h, θ) in a suitable subset U ⊂ <2, where h′ = dh(Z)/dZ,

θ′ = dθ(Z)/dZ, A = A(Z), M = M(Z). Details of the constants and the functions A and

M are recalled below.

The system (5.1) is here considered formally as just a given first order o.d.e. system

with an ‘independent’ variable Z ∈ < and ‘dependent’ variables (h, θ), but of course we

bear in mind the economic derivation of the system explained in [A]. Thus we interpret Z

as log-capital and consider the situation where there is given a logarithmic consumption

H(Z) which generates a feasible plan in the underlying growth model,1 so that log-

consumption ln c̄ is a time-invariant, deterministic function H(Z) of Z = ln k̄ for Z ∈ <,

(both variables being measured in ‘intensive’ units). In this situation we define

h(Z) = dH(Z)/dZ, θ(Z) = exp{H(Z)− Z},
1For H to generate a feasible plan it is sufficient that H ′(Z) = h(Z) and θ(Z) = exp{H(Z) − Z} be

bounded for Z ∈ < and that the random processes c̄t = c̄(ω, t) and zt = z(ω, t), representing random
consumption and capital in intensive units, satisfy ln c̄t = H(zt) and dzt = [A(zt) − θ(zt)]dt + dxt for
all t ≥ 0 a.s. with z0 = lnK0 a.s., K0 > 0, where A(zt) represents the (random) average product of
log-capital, θ(zt) = exp{H(zt)− zt} and dxt = µdt+ σdBt. See [A] for details.
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so that

ln θ(Z) = H(Z)/Z = c̄/k̄, θ′ = (h− 1)θ;

then ln θ(Z) represents the ‘average propensity to consume out of capital’ while h(Z) is

the ‘(logarithmic) marginal propensity to consume’ or ‘elasticity of consumption with

respect to capital’.

Returning to eq. (5.1), recall that b > 0 is a coefficient of relative risk aversion — see

[A] (1.5) and (1.30) — and σ2 > 0, n, m are ‘compound’ parameters which are defined in

terms of the ‘primitive’ parameters of the underlying stochastic model, namely b and the

means and variances µη, σ
2
η, η = α, β, γ, ρ of the four Brownian motions — see [A] (1.7)

et seq. Note that, in the present Part C, the values of all these parameters are assumed

to be fixed throughout. The functions A and M , representing average and marginal

products of log-capital, are defined for Z ∈ < in terms of the ‘intensive’ production

function ψ by

(5.2) A(Z) = ψ(K)/K = a(K), M(Z) = ψ′(K), Z = lnK, K > 0.

Recall that ψ is defined for K ≥ 0, with ψ(0) = 0, and is (at least) C2 with

ψ′(K) > 0 > ψ′′(K) for 0 < K <∞, and limits(5.3)

0 < ψ′0 = ψ′(0) <∞, ψ′(∞) = 0,(5.4)

see [A] (1.3–1.4). It is further implicit in the assumptions made in Part A about the

production function Ψ that the limits ψ′′(0) and ψ′′(∞) = 0 exist. Of course, ψ′(K) <

a(K) for 0 < K < ∞, and using (2) we have da(K)/dK = [ψ′(K) − a(K)]/K. Thus

0 < M(Z)/A(Z) < 1 for Z ∈ <, and — as noted in [A] (1.23) —

A′(Z) = da(K)/d lnK = ψ′(K)− a(K) = M(Z)− A(Z) = [M(Z)/A(Z)− 1]A(Z),(5.5)

also

M ′(Z) = dψ′(K)/d lnK] = Kψ′′(K)(5.5a)

hence

M ′(Z)/A′(Z) = [dψ′(K)/dK]/[da(K)/dK] = Kψ′′(K)/[ψ′(K)− a(K)] > 0.(5.5b)
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It follows from (5–5a) and ψ′′ < 0 that both A(Z) and M(Z) are decreasing and at least

C1 on <, and by (2–4) these functions have one-sided limits

(5.6) A(−∞) = M(−∞) = ψ′0 = a(0), A(∞) = M(∞) = ψ′(∞) = a(∞) = 0.

We now list some further remarks and minor new assumptions about the limiting

behaviour of the average and marginal product functions which will be needed later.

As Z → −∞, K → 0, we have by the preceding remarks

(5.7) lim
Z→−∞

M(Z)/A(Z) = lim
K→0

ψ′(K)/a(K) = 1; A′(−∞) = 0.

Assuming further that

(5.8) 0 > ψ′′(0) > −∞,

a simple application of Taylor’s Theorem yields the limit

(5.9) lim
K→0
{Kψ′′(K)/[ψ′(K)− a(K)]} = 2.2

For Z →∞, K →∞, we further assume the existence of the limit

(5.10) r0
.
= lim

Z→∞
M(Z)/A(Z) = lim

K→∞
ψ′(K)/a(K), 0 ≤ r0 < 1, r0 6= b.

The last term in (5) is therefore defined for Z =∞, so that

(5.11) A′(∞) = 0.

Further, assuming convergence of the expressions in (5b), L’Hôpital’s Theorem yields

(5.12) r0 = lim
Z→∞

M ′(Z)/A′(Z) = lim
K→∞

{Kψ′′(K)/[ψ′(K)− a(K)]} ≥ 0.

(For production functions usually considered which satisfy (4), one often obtains r0 = 0.)

2Write ψ(K) = Kψ′(0) + 1
2K

2ψ′′(δ0K), a(K) = ψ(K)/K = ψ′(0) + 1
2Kψ

′′(δ0K), ψ′(K) = ψ′(0) +
Kψ′′(δ1K), substitute for ψ′ and a in the expression Kψ′′(ψ′ − a), cancel K and let K → 0. The
existence of the limit on the left of (5.9) is required later on, but the assumption that ψ′′(0) < 0 can
be relaxed. A weaker alternative is to assume that ψ(K) can be developed as a Taylor series in a
right neighbourhood of 0 up to some order i, where i is the first integer > 1 for which the derivative
ψ(i)(0) 6= 0. Then the limit in (5.9) is obtained as i instead of 2, and appropriate replacements must
be made in later calculations.
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Returning to (1), recall also the definitions of the following constants:

N = n+ (b− 1)ψ′0/b, ν = N + ψ′0/b = n+ ψ′0,(5.13)

q = n+ (b− 1)(m+
1

2
bσ2)/b,(5.14)

Q = n−m/b+
1

2
bσ2 = q −m+

1

2
σ2,(5.15)

cf. [A] (1.15–16), [B] (3.39)ff. As in [B], we impose throughout the following

standing assumptions.

If b > 1, then N > 0 and {either n > 0 or q > 0}.(5.16)

If b < 1, then n > 0 and {either N > 0 or q > 0}.(5.17)

If b = 1, then N = n = q > 0.(5.18)

Usually we leave aside without special mention cases with n = 0 or N = 0, regarding

which see [B], S.2 fn.3 and Fig.5, also cases with b = 1.

As in [B], we often denote by π = (h, θ) a point of <2 and use curly brackets {..}
to denote a set of <2, while bold curly brackets {..} denote a set of <3. Sometimes we

write the system (1) in vector form as

(5.1a) π′ = S[π, Z], S = (F,G),

and regard S : U × < → <2 as a ‘capital-dependent’ C1 vector field, with a suitable

domain U ⊆ <2.

The choice of domain will vary according to the question under discussion. The

system S (and the systems S±∞ considered below) will always be taken as defined for at

least one of the domains, {θ ≥ 0}, {θ > 0}, here called basic domains ; but for particular

arguments it will sometimes be convenient to consider the restriction to a suitable sub-

domain, which may again be denoted by U (with affixes if necessary). For brevity we

sometimes leave the domain to be inferred from the context.3

3The symbols U, V and W are used generically in this Part and the next to denote sets of <2, <3

and <4 respectively which serve as domains or sub-domains for various vector fields; thus U may be
{θ ≥ 0}, U+ = {h > 0, θ ≥ 0}, {θ > 0}, U++ = {h > 0, θ > 0}, while V may be U × <, U × [Z,∞),
U× (−∞, Z] or a suitable subset of such a product, e.g., V+ = U+ ×<, V++ = U++ ×<, etc.

Incidentally, ‘domain’ here means ‘domain of definition’ rather than ‘open connected set’. In case
a domain contains some of its boundary points, we consider (without special mention) only ‘inward’
derivatives at these points, e.g when referring to C1 properties of a vector field. Also, for a point p of

4



Given a basic domain U for S and an interval I ⊆ <, a solution φ of S on I is by

definition a function Z 7→ φ(Z) = (h(Z), θ(Z)) of class C1 from I into U satisfying (5.1),

or equivalently φ′(Z) = S[φ(Z), Z], for Z ∈ I. The corresponding curve in the (h, θ) plane

<2 — strictly, the image set φ̆(I) = {φ(Z) : Z ∈ I} parametrised and ordered by I — is

called the path of φ (on I).

In particular, a given point (π♦, Z♦) ∈ U×< defines a unique local solution of S

φ = φ(Z; π♦, Z♦) = (h(Z; π♦, Z♦), θ(Z; π♦, Z♦))

‘through’ that point, i.e. φ(Z♦; π♦, Z♦) = π♦, and this solution may be continued on a

maximal open interval I(π♦, Z♦) = (Z−(π♦, Z♦), Z+(π♦, Z♦)). The corresponding path

in <2 is denoted φ̆(π♦, Z♦) = {φ(Z; π♦, Z♦) : Z ∈ I(π♦, Z♦)}. According to context we

say that the solution (or the corresponding path) starts at (π♦, Z♦), or at π♦ (given Z♦),

or simply at Z♦. If Z♦ = 0, we write φ(Z; π♦, 0) as φ0(Z; π♦) and I(π♦, Z♦) as I0(π♦)

etc. Sometimes we consider only the forward or backward solution and write S., φ. or

S/, φ/ instead of S, φ. Given Z♦, the forward solution is restricted to Z ≥ Z♦ and its

interval of definition is of the form I.(π♦, Z♦) = [Z♦, Z+); similarly the backward solution

is restricted to Z ≤ Z♦ with interval of definition I/(π♦, Z♦) = (Z−, Z♦].

a given domain V ⊆ <K , the term ‘neighbourhood of p’ will be taken to mean a ‘neighbourhood w.r.t.
V’; thus a neighbourhood of a boundary point of V will be a set of the form N ∩ V, where N is a
neighbourhood of p w.r.t. <K .
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(ii) Asymptotic Systems S±∞.

Although the system S = (F,G) is not autonomous, it depends on Z only indirectly

via the functions A and M . Using the limits (6) of these functions, we define limiting

autonomous systems S±∞ = (F±∞, G), where

F∞(h, θ) = bh2 + (2/σ2)h[θ − n+m/b− 1

2
bσ2]− 2m/bσ2(5.19a)

F−∞(h, θ) = bh2 + (2/σ2)h[θ −N + (m− ψ′0)/b−
1

2
bσ2]− 2(m− ψ′0)/bσ2(5.19b)

see [B] (3.1–2). The limiting systems possess saddle points4

(5.20) π∗∞ = (h∗∞, θ
∗
∞) and π∗−∞ = (h∗∞, θ

∗
−∞)

with co-ordinates as follows:

π∗∞ = (1, n) if n > 0, (S∞ is Type 1)(5.21a)

π∗−∞ = (1, N) if N > 0, (S−∞ is Type 1)

π∗∞ = (h+
∞, 0) if b > 1, q > 0 > n, 1/b < h+

∞ < 1, (S∞ is Type 0)(5.21b)

π∗−∞ = (h−−∞, 0) if b < 1, q > 0 > N, 1/b > h−−∞ > 1, (S−∞ is Type 0)

where h+
∞ is the greater of the two real roots of F∞(h, 0) = 0,

h−−∞ is the lesser of the two real roots of F−∞(h, 0) = 0.

At each saddle point there are two distinct, real, non-zero eigenvalues λi, one positive

and one negative. Further details of parameter values for S∞ and S−∞ are given in [B]

Section 3 and Table 1, also in Section 6, Table 2 below.

We recall some further definitions and results (occasionally with amendments) which

are needed later on. Terminology for S±∞ is analogous to that for autonomous systems

4Given a system S̄ (here S∞ or S−∞), see [B] S.3, defined on a domain U ⊆ <2, a point π∗ ∈ U
is by definition a saddle point if it is a stationary point of the system and the Jacobian matrix (3.15)
at π∗ has two real, non-zero eigenvalues of opposite sign. In case π∗ is a boundary point of U, the
entries in the matrix are ‘inward’ derivatives, see fn.3 above. Consequently, extending [B] S.3, fn.13, if
U = {θ ≥ 0} and S̄ = S∞ is Type 0, the stable manifold at π∗∞ is a manifold with boundary; similarly
if S̄ = S−∞ is Type 0, the unstable manifold at π∗−∞ is a manifold with boundary.

For simplicity, we leave aside the case b > 1, h+
∞ = 1, n = 0, where π∗∞ is a saddle-node if U = <2

but a saddle if U = {θ ≥ 0}, see [B] 5.6 fn.6 and Figure 5; similarly we leave aside the case b < 1,
h−−∞ = 1, N = 0.
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S̄ considered in [B], S.3, see especially S.3 fn.5. We write π′ = S∞(π) and regard

S∞ : U 7→ <2 as a vector field, with a basic domain U ⊆ <2.

Given U and an interval I, a solution of S∞ on I is a C1 function Z 7→ φ∞(Z) =

(h∞(Z), θ∞(Z)) from I into U satisfying φ′∞(Z) = S∞[φ∞(Z)] for Z ∈ I. The correspond-

ing path in <2 is φ̆∞(I) = {φ∞(Z) : Z ∈ I}. A point (π♦, Z♦) defines a unique solution

φ∞(Z; π♦, Z♦) ‘through’ that point, i.e. φ∞(Z♦; π♦, Z♦) = π♦; this solution may be con-

tinued on a maximal interval I∞(π♦, Z♦) containing Z♦. If Z♦ = 0, we write this solution

as φ0
∞(Z; π♦) and the interval of definition as I0

∞(π♦). Because of autonomy,

(5.22) φ∞(Z; π♦, Z♦) = φ0
∞(ζ; π♦), where ζ = Z − Z♦ ∈ I0

∞(π♦) = I∞(π♦, Z♦)− Z♦.

The corresponding path is denoted φ̆∞(π♦, Z♦), or simply φ̆0
∞(π♦) if Z♦ = 0. Forward

and backward solutions and paths starting at a given Z♦ are defined in the obvious way.

Analogous conventions apply to S−∞, φ−∞ etc.

Information about the phase picture and asymptotic behaviour of solutions of systems

S±∞ may be obtained from the discussion of systems S̄ = (F̄ , G) in [B] by setting F̄ = F∞

or F̄ = F−∞. In particular, every solution of S∞ with θ > 0 which remains bounded as

Z increases (decreases) can be continued as Z →∞ (Z → −∞) and converges to one of

the stationary points of S∞; similarly for S−∞. The appropriate limits are indicated in

[B] Figures 2 (see also S.3, fns.11 and 13 regarding solutions with θ = 0). Here we are

mainly concerned with solutions of S∞ which converge as Z → ∞ to the saddle point

π∗∞, and solutions of S−∞ which converge as Z → −∞ to the saddle point π∗−∞. Details

follow.

Given a set U ⊆ <2, the stable set for S∞ (with respect to U) at the saddle point

π∗∞ is by definition the set

(5.23) M.(S∞,U) =M.
∞(U) = {π ∈ U : φ0

∞(ζ; π)→ π∗∞ as ζ →∞}

(where the notation is understood to entail that φ0
∞(ζ; π) is defined for all ζ ≥ 0).

Let U = {θ ≥ 0} and let S∞ be either Type 1, or Type 0 with b > 1. Referring

to [B] Section 3, Prop.6 and fn.13, also Figs 2, it is seen that M.
∞(U) is the graph of

a C1 function h = f∞(θ), which is defined for 0 < θ < ∞ if S∞ is Type 1, but for

0 ≤ θ <∞ if S∞ is Type 0. Of course, the reason for this distinction is that the saddle
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point π∗∞ must be considered as a point of the stable set. In order to avoid repeating

such distinctions, we shall sometimes write

&+ to mean ‘ > if S∞ is Type 1, ≥ if S∞ is Type 0’.(5.24)

&− to mean ‘ > if S−∞ is Type 1, ≥ if S−∞ is Type 0.’

Now define

(5.25) U+
.
= {h > 0, θ ≥ 0}, U++ = {h > 0, θ > 0}.

Referring again to [B] Section 3 it is seen that (if S∞ is Type 1, or Type 0 with b > 1)

M.
∞(U+) is the graph of h = f∞(θ), where f∞ is restricted to an interval(5.26)

of the form 0 .+ θ < θ+(∞) with θ+(∞) ≤ ∞, and is positive, C1 and

decreasing on this interval.

From now on, the domain of the function f∞ (when defined) is taken to be the interval

on which it is positive; thus

(5.26a) dom f∞ = (θ : 0 .+ θ < θ+(∞)).

We usually write M.
∞(U+) simply as M.

∞. It is clear from the discussion of systems

S̄ = (F̄ , G) in [B] S.3, see esp. fn.13, thatM.
∞ is an (embedded) C1 sub-manifold in <2

(with boundary if S∞ is Type 0). Also, when f∞ is defined, M.
∞(U++) is the graph of

f∞ restricted to 0 < θ < θ+(∞) and is a sub-manifold (without boundary).5

If S∞ is Type 1, as in [B] Figs.2(i,ii), f∞ satisfies

(5.26b) f∞(n) = 1, f ′∞(n) = λ−/n < 0,

where λ− = λ−(1, n) is the negative eigenvalue at (1, n), see [B](3.19) and [B] Table 1.

If S∞ is Type 0 with b > 1, as in [B] Figs.2(iii,iv), f∞ satisfies

(5.26c) f∞(0) = h+
∞ = 1 + λ−, f ′∞(0) = 2(1 + λ−)/σ2(λ− − λ+) < 0,

5If U = U+ and S∞ is Type 0 with b < 1, M.
∞ lies in the axis {θ = 0} so that f∞ is undefined,

cf.fig.2(v).
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where λ± = λ±(h+
∞, 0) — see [B](3.22) and [B] Table 1.6

Notation and definitions for S−∞ are analogous to those for S∞ and we omit various

details. The definitions of solution, interval of definition and path are like those above

with ∞ replaced by −∞. Given a set U ⊆ <2, the unstable set at π∗−∞ (i.e. the stable

set for the backward motion) is

(5.27) M/(S−∞,U) =M/
−∞(U) = {π ∈ U : φ0

−∞(ζ; π)→ π∗−∞ as ζ → −∞}.

Restricting to U+ (and assuming that S−∞ is either Type 1, or Type 0 with b < 1)

M/
−∞(U+) is the graph of h = g−∞(θ), where g−∞ is restricted to an interval(5.28)

θ− .− θ <∞ with θ− = θ−(−∞) ≥ 0 and θ− · g(θ−) = 0, and is positive, C1

and increasing on this interval.

From now on, the domain of the function g−∞ (when defined) is taken to be the interval

on which it is positive. Thus

(5.28a) dom g−∞ = (θ : θ−(−∞) .− θ <∞).

We usually write M/
−∞(U+) simply as M/

−∞. It is a C1 sub-manifold in <2 (with

boundary if S−∞ is Type 0). Also M/
−∞(U++) is a sub-manifold (without boundary)

whichever the Type.

If S−∞ is Type 1, as in [B] Figs. 2(i,ii), g−∞ satisfies

(5.28b) g−∞(N) = 1, g′−∞(N) = λ+/N > 0,

where λ+ = λ+(1, N), see [B] (3.19) and Table 1.

If S−∞ is Type 0 with b < 1, as in [B] Fig. 2(v), g−∞ satisfies

(5.28c) g−∞(0) = h−−∞, g′−∞(0) = 2(1 + λ−)/σ2(λ− − λ+) > 0

6Given U ⊆ <2, we may also define the unstable setM/(S∞,U) for S∞ (w.r.t. U) at π∗∞ by replacing
ζ →∞ with ζ → −∞ in (5.23).

If U = U+ and S∞ is Type 1, so that π∗∞ = (1, n), M/
∞ is the graph of a C1 function h = g∞(θ)

which is defined, positive and increasing for θ− = θ−(∞) < θ <∞, where 0 < θ− and θ− · g∞(θ−) = 0.
In this case g∞(n) = 1 and g′∞(n) = λ+/n > 0, cf.(5.25b) and Figs.2(i,ii). If S∞ is Type 0, b > 1, M/

∞
lies in the axis {θ = 0} and g∞ is undefined cf. Figs.2(iii,iv).
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where λ± = λ±(h−−∞, 0) — see [B] 3.23 and [B] Table 1.7 8

7Unfortunately, the definitions in [B] imply that, for a saddle point π∗−∞ = (h−−∞, 0) of S−∞, we
have λ− > 0 > λ+.

8As in fn.6, we may also define the stable set M.(S−∞,U) for S−∞ (w.r.t. U) at π∗−∞ as in (5.23)
with S∞ replaced by S−∞, π∗∞ by π∗−∞.

If U = U+ and S−∞ is Type 1, so that π∗−∞ = (1, N),M.
−∞ is the graph of a C1 function h = f−∞(θ)

which is defined, positive and decreasing for 0 < θ < θ+(−∞), where θ+(−∞) ≤ ∞, cf.Figs.2(i,ii). In
this case f−∞(N) = 1 and f ′−∞(N) = λ−/N < 0. If S−∞ is Type 0, b < 1, M.

−∞ lies in the axis
{θ = 0} and f−∞ is undefined, cf.Fig.2(v).
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(iii) Special Solutions of S

We return to the system S and recall some results relating to asymptotic behaviour of

solutions which were obtained in [B]. According to Props.1 and 11 of [B], (see also S.4,

fn.3), a solution of S with θ ≥ 0 which remains bounded (in both co-ordinates) as Z

increases (decreases) can be continued to Z = ∞ (Z = −∞) and converges to a finite

limit, which by Prop.2 must be a stationary point of S∞ (S−∞). The stationary points

available depend on the Types of S∞ and S−∞; see [B] Prop.11 and Cor.11 for further

details.

We now focus on solutions of S which converge to saddle points of S∞ or S−∞. Let

U be {θ ≥ 0} or {θ > 0}. A solution φ of S which is defined on a right (left) unbounded

Z-interval and converges to π∗∞ (π∗−∞) is called a forward (backward) special solution

of S (relative to U), or f.s.s. (b.s.s.) for short; if φ(Z♦) = π♦ we call (π♦, Z♦) — or,

depending on context, just π♦ or just Z♦ — a forward (backward) special start. (Note

that we reserve the expressions ‘stable/unstable solutions’ for autonomous systems.)9 A

solution which is defined for all Z ∈ < and is both a f.s.s. and a b.s.s. is called a star

solution (or solution of the bilateral b.v.p.) and is denoted

(5.29) φ∗ = φ∗(Z; Z ∈ <) = (h∗(Z), θ∗(Z); Z ∈ <).10

It was shown in [B] that there is one and only one star solution. It will be useful to

recall some of the main ideas involved in the proof given in [B].

Let U = {θ > 0}, b > 1 and S∞ of either Type. According to [B] Prop.12(α), there

is for each fixed Z♦ ∈ < an interval (0, θ+(Z♦)) and, for θ in this interval, a unique

positive h = f(θ, Z♦) such that f(·, Z♦) is continuous and decreasing in θ and the point

9If U = {θ ≥ 0}, we allow θ ≥ 0 in the definitions of f.s.s. and b.s.s., although solutions with θ = 0
are of no economic interest. Of course, S has no f.s.s. with θ = 0 if S∞ is Type 1, and no b.s.s. with
θ = 0 if S−∞ is Type 1; thus the condition θ ≥ 0 could be replaced in the definitions of f.s.s. and b.s.s.
by θ &+ 0 and θ &− 0 respectively.

10Recall that the b.v.p. is said to be of Type 1 if both n > 0 and N > 0, where N ≡ n+ (b− 1)ψ′0/b,
i.e. if both S∞ and S−∞ are Type 1, cf.[B] Figs.2(i,ii) and 3. Otherwise the b.v.p. is of Type 0, the
possible cases being

N > 0 > n, with b > 1 and q > 0 according to [B](0,8), cf.Figs.4(i,ii,iii)(i)
n > 0 > N, with 0 < b < 1 and q > 0 according to [B](0,9), cf.Figs.4(iv,v).(ii)
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(f(θ, Z♦), θ, Z♦) is a forward special start, i.e.

(5.30a) ϕ(Z; f(θ, Z♦), θ, Z♦)→ π∗∞, Z♦ ≤ Z →∞.

Next, Prop.12(β) asserts that, for b > 1 and δ, Zδ chosen as in(3.43) and fixed Z♦ ≤ Z
δ

(i.e. Z♦ far left), there is a θ-interval (θ−(Z♦),∞) and, for θ in this interval, a unique

positive h = g(θ, Z♦) such that g(·, Z♦) is continuous and increasing and the point

(g(θ, Z♦), θ, Z♦) is a backward special start, i.e.

(5.30b) ϕ(Z; g(θ, Z♦), θ, Z♦)→ π∗−∞, Z♦ ≥ Z → −∞.

The proof of the Existence Theorem [B]T.4 for b > 1 then shows that, for fixed Z♦ ≤ Z
δ,

there is a point

(h∗♦, θ
∗
♦, Z♦) = (h∗(Z♦), θ∗(Z♦), Z♦)

which is both a forward and a backward special start, i.e.

(5.31a) h∗♦ = f(θ∗♦, Z♦) = g(θ∗♦, Z♦),

i.e. the point is the start of a star solution

(5.31b) ϕ(Z;h∗♦, θ
∗
♦, Z♦)→ π∗∞ as Z →∞ and → π∗−∞ as Z → −∞.

Also, since f(·, Z♦) is decreasing and g(·, Z♦) is increasing, the point (h∗♦, θ
∗
♦, Z♦) is

unique (for fixed Z♦), as is the star solution.

Similarly, if b ≤ 1, S−∞ of either Type, Prop.13(β) says that there is for each fixed

Z♦ ∈ < a θ-interval (θ−(Z♦),∞) and, for θ in this interval, a unique positive h = g(θ, Z♦)

such that g(·, Z♦) is continuous and increasing in θ and the point (g(θ, Z♦), θ, Z♦) is a

backward special start, cf.(5.30b). Next, Prop.13(α) asserts that, for b < 1 and %, Z
%

chosen as in (3.51) and fixed Z♦ ≥ Z
ρ (i.e. Z♦ far right), there is an interval (θ−(Z♦),∞)

and, for θ in this interval, a unique positive h = f(θ, Z♦) such that f(θ, Z♦) is continuous

and decreasing and the point (f(θ, Z♦), θ, Z♦) is a forward special start, cf.(5.30a).

The proof of T.4 for b ≤ 1 then shows that, for Z♦ ≥ Z
%, there is a point (h∗♦, θ

∗
♦, Z♦) =

(h∗(Z♦), θ∗(Z♦), Z♦) which is the start of a star solution, cf.(5.31a,b).
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Now, extending slightly the notation of [B] (4.1), consider a set V ⊆ U×< and let

M.(V) =M. = {(π♦, Z♦) = (h♦, θ♦, Z♦) ∈ V : φ(Z; π♦, Z♦)→ π∗∞, Z♦ ≤ Z ↑ ∞},
(5.33)

M/(V) =M/ = {(π♦, Z♦) = (h♦, θ♦, Z♦) ∈ V : φ(Z; π♦, Z♦)→ π∗−∞, Z♦ ≥ Z ↓ −∞},
(5.34)

where π∗∞ and π∗−∞ are the saddle points of S∞ and S−∞ (of either Type). In case

V = U×<, the sets (5.33–34) are sometimes written simply asM. andM/, cf.[B](4.1).

The section of M. at a fixed Z♦ is written M.(Z♦) and the section at a fixed (θ♦, Z♦)

is M.(θ♦, Z♦). For example,

(5.35a) M.(Z♦) = {π♦ ∈ U : φ(Z; π♦, Z♦)→ π∗∞, Z♦ ≤ Z ↑ ∞}.

Also M.(U×<) is written as

(5.35b) M.
+ if U = U+, M.

++ if U = U++.

Similarly the section of M/ at Z♦ is

M/(Z♦) = {π♦ ∈ U : φ(Z; π♦, Z♦)→ π∗−∞, Z♦ ≥ Z ↓ −∞}, and(5.36a)

M/(U×<) is written as M/
+ if U = U+, as M/

++ if U = U++.(5.36b)

It follows that, for fixed Z♦ ∈ < such that the function f(θ, Z♦) is defined,

(5.37a) M.
++(Z♦) is the graph of {(h, θ) : h = f(θ, Z♦), 0 < θ < θ+(Z♦)},

Similarly, for fixed Z♦ ∈ < such that the function g(θ, Z♦) is defined,

(5.37b) M/
++(Z♦) is the graph of {(h, θ) : h = g(θ, Z♦), θ−(Z♦) < θ <∞}.

The Proof of [B] T.4 shows that, in all cases satisfying our Standing Assumptions,

there exist, for fixed Z♦ such that both f(θ; Z♦) and g(θ; Z♦) are defined,

θ∗♦ = θ∗(Z♦) ∈ (θ−(Z♦), θ+(Z♦)) and h∗♦ = h∗(Z♦) > 0 satisfying(5.38a)

h∗♦ = f(θ∗♦; Z♦) = g(θ∗♦; Z♦).
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The solution φ(Z;h∗♦, θ
∗
♦, Z♦) of S ‘through’ the initial point (h∗♦, θ

∗
♦, Z♦) may be con-

tinued for all Z ∈ < and defines a ‘star’ solution. Also, since f(·, Z♦) is decreasing and

g(·, Z♦) is increasing, the point (h∗♦, θ
∗
♦, Z♦) is unique, as is the star solution. It follows

that (for fixed Z♦ chosen as above)

(5.38b) M.
++(Z♦) ∩M/

++(Z♦) = {h∗(Z♦), θ∗(Z♦)}.

Now note that, for b > 1, Prop.12(α) yields, for every fixed Z♦ ∈ <, a function

f(·, Z♦) which is continuous, decreasing and positive on a maximal interval (0, θ+(Z♦))

such that, for θ in this interval, the point (f(θ, Z♦), θ, Z♦) is a forward special start; but

for b ≤ 1, Prop.13(α) yields such a function only for Z♦ ≥ Z
ρ, where ρ ∈ (0, ψ′0) is to be

chosen so small that A(Z) < ρ for Z ≥ Z
ρ, as in [B](3.51). Again, for b ≤ 1, Prop.13(β)

yields, for every fixed Z♦ ∈ <, a function g(·, Z♦) which is continuous, increasing and

positive on a maximal interval (θ−(Z♦),∞) such that, for θ in this interval, the point

(g(θ, Z♦), θ, Z♦) is a backward special start; but for b > 1, Prop.12(β) yields such a

function only for Z♦ ≤ Z
δ, where δ ∈ (0, ψ′0) is to be chosen so small that ψ′0−M(Z) < δ

for Z ≤ Z
δ, as in [B](3.43). However, it can be shown that the functions f(·, Z♦) and

g(·, Z♦) exist and have the stated properties for all b > 0 and all Z♦ ∈ <. 11

Remark 1. The functions f and g considered here should not be confused with the

functions f̄ , ḡ appearing in [B] S.3, see esp. Props.6 and 7. The functions f̄ , ḡ relate to

systems S̄, whereas f , g relate to S.

Remark 2. Props. 12 and 13 were proved with U = {θ > 0}. If we let U = {θ ≥ 0},
the preceding assertions are essentially unaltered, except that f(·, Z♦) is defined for

0 .+ θ < θ+(Z♦), and g(·, Z♦) for 0 .− θ− < θ <∞ where θ− = θ−(Z♦) and

θ− · g(θ−; Z♦) = 0, (see (5.24) for notation, also Figs.3 & 4.) Note that, as in (5.26a)

and (5.28a), f(θ, Z♦) and g(θ, Z♦) are now regarded as defined only on the θ-intervals

on which these functions are positive.

11With minor modifications, the proof in Prop.12(α) that functions f(·, Z♦) exist applies whenever
the functions f∧(θ) and f∨(θ) and hence the ‘tube’ C. in (3.11) are defined. See [B] Figures 3(i–vi) and
4(i–iii). Similarly the proof in Prop.13(β) that functions g(·, Z♦) exist applies with some modifications
whenever g∧(θ) and g∨(θ), and hence the ‘tube’ C/ in (3.42), are defined. See Figures [B] 3(i–vi) and
4(iv–v). However this approach does not yield the existence of f(·, Z♦) for Z♦ < Z

ρ if b < 1 and S∞ is
Type 1 but S−∞ is Type 0, as in Figs.4(iv,v), because then f∨ is not defined. Similarly, this approach
does not yield the existence of g(·, Z♦) for Z♦ > Z

δ if b > 1 and S−∞ is Type 1 but S∞ is Type 0, as
in Figs.4(i,ii,iii), because then g∨ is not defined.

An alternative, more general, argument is given in the Appendix to this Section for the case b ≤ 1
and f , the argument for b > 1 and g being analogous.
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Remark 3. The present discussion (taking into account fn.11 and the Appendix to this

Section) yields a separate function h = f(θ, Z♦) for each Z♦ ∈ <. Letting Z♦ vary, we

obtain a function f(θ, Z) with domain

(5.39) dom f = {(θ, Z) : 0 .+ θ < θ+(Z), Z ∈ <}.

At this stage we do not have continuity in the pair (θ, Z) or any C1 properties. However,

f(θ, Z) is well defined for each (θ, Z), and since f(·, Z) is strictly decreasing in θ there is a

θ-a.e. defined (but not necessarily continuous) negative derivative f ′θ(·, Z). Also referring

to the definitions (5.35a,b), we have that

M.
+ is the graph of {f(θ, Z) : 0 .+ θ < θ+(Z), Z ∈ <},(5.39a)

M.
++ is the graph of {f(θ, Z) : 0 < θ < θ+(Z), Z ∈ <}.(5.39b)

Analogous remarks for M/
+, M/

++ and g; thus

dom g = {(θ, Z) : θ−(Z) .− θ <∞, Z ∈ <},(5.40)

M/
+ is the graph of {g(θ, Z) : θ−(Z) .− θ <∞, Z ∈ <},(5.40a)

M/
++ is the graph of {g(θ, Z) : θ−(Z) < θ <∞, Z ∈ <}.(5.40b)

Letting M∗ = M∗
++ denote the graph of the solution ϕ∗ = ϕ∗(Z; Z ∈ <) in V++ =

U++ ×<, i.e. the set {(π∗(Z), Z) : Z ∈ <}, we have,

(5.41) M∗
++ =M.

++ ∩M/
++, M∗

++(Z♦) =M.
++(Z♦) ∩M/

++(Z♦) for Z♦ ∈ <.

Similarly if U++, V++, M∗
++ etc. are replaced by U+, V+, M∗

+ .

As was mentioned above, the sets of f.s.s. and b.s.s. are analogous to the ‘stable’ and

‘unstable’ manifolds of saddle points of dynamical systems, but with two differences:

that S, being non-autonomous, does not directly define a dynamical system, and that

π∗∞ and π∗−∞ are not saddle points of S but of systems ‘at ±∞’. We therefore do not

know at this stage whether or how the usual stable/unstable manifold theorems apply

to sets of f.s.s./b.s.s.. For the investigations in Part D we need these sets to be (at

least) C1 manifolds, with suitable C1 convergence properties as Z → ∞ and Z → −∞
as well as (local and global) C1 persistence properties with respect to parameters. In

the next Section we shall construct an imbedding of the systems S and S±∞ in a three-

dimensional autonomous system S such that π∗±∞ are mapped to (3-D) saddle points
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p∗±∞ of S, the sets M. andM/ etc., are mapped into differentiable manifolds to which

stable/unstable manifold theorems apply, and φ∗ corresponds to a saddle connection in

S. This construction will be extended in Part D to allow perturbations of the parameters

of the underlying stochastic growth model.
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Appendix to Section 5.

We consider further the existence of the functions f(·, Z) for fixed Z♦ ∈ < and their
domains, particularly in case b < 1. Here we leave aside the argument of fn.11 above.

Let U = {θ > 0} and consider the usual phase diagrams with co-ordinates (h, θ).
Since θ′ = (h− 1)θ, the motion of S as Z ↑ is always to the left on {h < 1}, i.e. θ(Z) ↓,
and to the right on {h > 1}, i.e. θ(Z) ↑. Also it follows from (5.1) that F (0, θ, Z) has the
sign opposite to that of m−M(Z) for Z ∈ <̄. Thus, for any solution path of S (or S±∞)
there can be no downcrossing of the axis {h = 0} at a given Z♦ as Z ↑ if m < M(Z♦);
if m ≤ 0, there can be no downcrossing at all. Again, there can be no upcrossing at Z♦
if m > M(Z♦); if m ≥ ψ′0, there can be no upcrossings at all. If 0 < m < ψ′0, there is
Zm ∈ < for which M(Zm) = m, and for Z♦ ∈ (−∞, Zm) we have m < M(Z♦), hence no
downcrossings, while for Z♦ ∈ (Zm,∞) we have m > M(Z♦), hence no upcrossings. If
F (0, θ(Z♦), Z♦) = 0 at some Z♦ along a solution path of S, then Z♦ = Zm, m = M(Z♦).
In this case h(Zm) = h′(Zm) = 0, θ′(Zm) = −θ(Zm) < 0, hence

h′′ = F ′ = Fh · h′ + Fθ · θ′ + FZ = FZ = 2M ′(2m)/bσ2 < 0

since M(Z) is decreasing. So there is a local maximum of h(Z) at Z = Zm, hence a
tangency to the axis from below.

Consider next the solution paths of forward special solutions (f.s.s.). As in the proof
of [B] Prop.12(α), the set M.(Z♦) of f.s.s. starts at a fixed Z♦ — see (5.35a) —, if not
empty, is a continuous simple curve, say of the form f(h, θ, Z♦) = 0, defined for h ∈ <
and θ in an interval of the form (θ−(Z♦), θ∗). Each point (h♦, θ♦, Z♦) on the curve defines
an f.s.s. ϕ(Z;h♦, θ♦, Z♦), where ϕ(Z) = (h(Z), θ(Z)). For simplicity we shall assume that
such a solution can be continued to Z = −∞ as Z ↓, which implies that h(Z)→ ±0 and
θ → θ−(Z♦) = ∞ as Z → −∞; (if b < 1, this holds automatically, cf. [B], the para.
following eq(3.30)); of course, ϕ(Z) → π∗∞, which may be of either Type, as Z → ∞.
This further implies that, for every Z♦ ∈ <,M.(Z♦) is not empty; (however,M.

++(Z♦),
the restriction of M.(Z♦) to U++ = {h > 0, θ > 0} could be empty). If M.

++(Z♦) is
not empty, it is the graph of the function h = f(θ, Z♦) obtained by restricting f(h, θ, Z♦)
to U++; this function is continuous, positive and decreasing on a maximal θ-interval
(0, θ+(Z♦)), where (with the usual convention for the limit) f(θ+(Z♦), Z♦) = 0.

If b > 1, the existence for every Z♦ ∈ < of a function f(·, Z♦) follows from Prop.12(α).
We now assume b < 1 and choose ρ > 0 small enough so that Prop.13(α) applies;
then M++(Zρ) is the graph of a function h = f(θ, Zρ), with domain (0, θ+(Zρ)) and it
follows from the ‘co-operative’ property of S on U++ that, as Z = Z♦ varies through
<, the image of the curve h = f(θ, Zρ) under the motion Z

ρ 7→ Z♦, restricted to U++,
is a curve h = f(θ, Z♦) which is again continuous, positive and decreasing in θ on a
maximal interval (0, θ+(Z♦)), the order of points along the curve h = f(θ, Zρ) being
preserved under the motion of S. Explicitly, if (hiρ, θiρ), i = 0, 1, are points satisfying
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hi(Zρ) = f(θi(Zρ), Zρ), then

0 < h1(Zρ) < h0(Zρ) and θ1(Zρ) > θ0(Zρ) implies

0 < h1(Z♦) < h0(Z♦) and θ1(Z♦) > θ0(Z♦),

where hi(Z♦) = f(θi, Z♦), at least as long as h1(Z♦) > 0. For Z♦ > Z
ρ this follows from

[B] Prop.9(α), and for Z♦ < Z
ρ from Prop.9(β). It follows that, for each Z♦ for which

M++(Z♦) is not empty, there is a function f(·, Z♦) which is continuous, decreasing and
positive on an interval (0, θ+(Z♦)) with θ+(Z♦) ≤ ∞.

Better results can be given if account is taken of the value of the parameter m. Until
further notice, we now drop the assumption that b < 1. Referring to [B] Prop.7 and
Figures 3–4, we note that

0 < f∨(θ) < f∨ρ(θ) < f∞(θ) < f∧ρ(θ) < f∧(θ)

for 0 < θ <∞ whenever the functions in question are defined.

We consider the functions f(·, Z♦) under alternative conditions on m.

(i) If m ≥ ψ′0, then m > M(Z) for all Z ∈ < ∪ {∞} as in Figs.3(iii), 3(vi) and 4(iii).
In this case, there are no upcrossings of the axis {h = 0} as Z ↑, so any f.s.s. must
satisfy h(Z) > 0 for all Z. In this case, curves f(θ, Z♦) exist for each Z♦ and lie between
f∨(θ) and f∧(θ) (although f∨ is not drawn in 3(vi)). Since θ∨+ = θ∧+ = ∞, we have
θ+(Z♦) = ∞ and the curves f(θ, Z♦) are defined and positive for all θ ∈ <. (The case
b < 1, n > 0 > N , q > 0 cannot occur with m ≥ ψ′0, since then m−M(Z) + 1

2
bσ2 < 0,

see [B](3.6a).)

(ii) If m < 0, we have 0 < θ∨+ < θ∧+ <∞ provided f∨ is defined, as in Figs.3(i), 3(iv),
4(i) (although f∨ is not drawn in 3(iv)). In this case we know that, as in the proof of
Prop.12(α), a curve h = f(θ, Z♦) for Z♦ ∈ < must lie in the ‘tube’ bounded by f∧ and
f∨, so thatM++(Z♦) is not empty and θ+(Z♦) <∞; a diagram shows that θ+ increases
as Z♦ decreases.

If f∨ is undefined, as in Fig.4(iv), i.e. if b < 1, n > 0 > N , q > 0, m < 0, we can
still argue as follows. Note that f∧ is defined and θ+(f∧) <∞ in this case. Let (hρ, θρ)
vary along the curve h = (f(θ, Zρ), with h restricted to (0, 1), and consider the f.s.s.
ϕ(Z;hρ, θρ, Zρ) for Z < Z

ρ. As Z decreases, θ(Z) increases and h(Z) decreases (because
F (h, θ, Z) > 0 for 0 < h < 1 and θ > h). Eventually either ϕ(Z) crosses the curve f∧

at some point with h(Z) > 0, which is not permitted, or h(Z) crosses the axis {h = 0}
at some Z♦ with θ+(Z♦) < θ∧+, and then h(Z♦) = f(θ+(Z♦), Z♦) = 0, as required. A
diagram shows that θ+(Z♦) increases as hρ ↓, θρ ↑ along f(·, Zρ).

(iii) If 0 < m < ψ′0, we may assume that Z
ρ > Zm. For Z > Zm, a solution path of S

cannot downcross the axis {h = 0} as Z ↓, so any f.s.s. must have h(Z) > 0 for Z > Zm.
Consider again the paths of f.s.s. of the form ϕ(Z;hρ, θρ, Zρ) restricted to 0 < hρ < 1. For
Z♦ ∈ (Zm, Z

ρ), there are no downcrossings of the axis as Z ↓, so h(Z♦;hρ, θρ, Zρ) > 0 and
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h(Z♦) decreases as hρ decreases. Also h(Zm;hρ, θρ, Zρ) > 0; indeed a point (0, θ(Zm), Zm)
cannot be an f.s.s. start because (as seen above) it defines a tangency to the axis from
below. Now consider an f.s.s. defined for Z♦ < Zm on {0 < h < 1}. Such a solution
has the form φ(Z;hm, θm, Zm) with (hm, θm) a point of the curve h = f(θ, Zm), where
0 < hm < 1 and 0 < θm < ∞. For Z < Zm, downcrossing of the axis as Z ↓ is possible
but upcrossing is not. Now we may argue as in (ii) above. If both f∨ and f∧ are defined,
with θ+ < θ∧+ <∞ as in Figs.3(ii), 3(v), 4(ii), then f(·, Z♦) for Z♦ < Zm lies in the tube
bounded by f∨ and f∧, so θ+(Z♦) <∞. If f∨ is undefined, ϕ(Z;hρ, θρ, Zρ) either crosses
f∧ as Z ↓ (not allowed) or crosses the axis at some h(Z♦) with θ+(Z♦) < θ∧(Z♦) < ∞.
But in any case f∧ is defined with θ∧+ < ∞, so we obtain θ+(Z♦) < ∞, and a diagram
shows that θ+(Z♦) ↓ as hρ ↓.

These remarks yield the required result, namely that, for b < 1 and every m and
each Z♦ ∈ <, there is a function f(·, Z♦) which is continuous, decreasing and positive on
an interval (0, θ+(Z♦)) with θ+(Z♦) ≤ ∞.

A similar argument applies for functions g(·, θ) with f∨, f∧, f∨ρ replaced by g∨, g∧,
g∨δ with δ and Z

δ as in (3.43).
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6. A Dynamical System Formulation

Various methods have been proposed for extending the stability theory of autonomous

o.d.e.s to the non-autonomous case, in particular to systems which can be regarded as in

some sense perturbed autonomous systems; see for example Nemitskii and Stepanov [1960]

Ch.iii, Sell [1967]. However I have not found definitions and statements of relevant re-

sults in a form convenient for direct application to the theory of the consumption func-

tion. I shall therefore adopt a homespun method, relying on properties of the economic

model, of imbedding the non-autonomous two-dimensional systems S and S±∞ in an

autonomous, three-dimensional system S.

(i) Definition of the System S.

The construction will be built up in steps, restricting attention in this Part to the case

of fixed parameters:

First Step. The terms on the right of (5.1) which make the system S non-autonomous

are those involving A(Z) and M(Z), functions which express the dependence of average

and marginal products on log-capital. Both of these are decreasing functions of Z whose

range is the interval (0, ψ′0). Moreover M(Z) can be expressed directly as a proportion

of A(Z) for each Z, say

(6.1) M/A = r(A), with 0 < r(A) < 1.

The idea then is to replace A(Z) in the formula for F by a new variable α, and to replace

M(Z) by αr(α), the function r(α) being so chosen that

(6.2) αr(α) = M(Z) = ψ′(K) when α = A(Z) = a(K), Z = lnK ∈ <.

More formally, we introduce a new variable α and define a new function r(α), initially

for α ∈ (0, ψ′0), by

(6.3) αr(α) = ψ′[a−1(α)], or αr(α) = M [A−1(α)],

where a−1, A−1 are the functions inverse to a, A. This definition makes no explicit

reference to Z or K, but on setting

(6.4) α = A(Z) = a(K)
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we obviously have (2). The variables α and αr(α) may be thought of as (standardised)

‘dummy’ average and marginal products. Replacing A′(Z), A(Z) and M(Z)/A(Z) in (5.5)

by α′, α and r(α), and defining

(6.5) J(α) = [r(α)− 1]α,

we obtain an o.d.e.

(6.6) α′ = J(α) = [r(α)− 1]α,

where as usual α = α(Z), α′ = dα/dZ for Z ∈ <, and J(α) is defined for α ∈ (0, ψ′0).

Since 0 < r(α) < 1, every solution α(Z) of (6) is decreasing in Z. Note that the equation

has the ‘natural’ economic solution

(6.7) α(Z) = A(Z)

but it also has the family of ‘artificial’ solutions

(6.8) α(Z) = A(Z + γ) = a(Keγ),

where γ is a real constant. Since each solution is obtained by shifting the graph of A(Z)

horizontally by −γ, all solutions (8) are defined for all Z ∈ < and all have the same image

set (0, ψ′0). In particular, for every γ the solution α(Z;α♦) of (6) with initial condition

α♦ = A(Z♦ + γ) converges to zero as Z →∞ and to ψ′0 as Z → −∞.

Now let F(h, θ, α) denote the expression obtained on replacing A by α and M by

αr(α) in the formula for F (h, θ, Z) — see (5.1) — so that

(6.9) F(h, θ, α) = F (h, θ, Z) when α = A(Z), Z ∈ <.

On replacing F by F in (5.1) and adjoining (6), we have a new, autonomous C1 system

S = (F, G, J). Explicitly, this system can be written as

h′ = F(h, θ, α) = bh2 + (2/σ2)h[θ −Q− α]− (2/bσ2)[m− αr(α)](6.10)

θ′ = G(h, θ) = (h− 1)θ

α′ = J(α) = [r(α)− 1]α.

We now state some further definitions, analogous to those used in the case of S, (but
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where the meaning of terms is obvious we sometimes abbreviate). We often denote by

p = (h, θ, α) = (π, α) a point of <3 and write (10) in vector form as

(6.10a) p′ = S(p), S = (F, G, J),

regarding S : V 7→ <3 as a C1 vector field on a suitable domain V. At this stage we set

V = U × (0, ψ′0), where U is a basic domain of S. We write p > 0 if all co-ordinates

(h, θ, α) are (strictly) positive.

Given V and an interval I ⊆ <, a solution of S on I is by definition a function Z 7→
Φ(Z) = (h(Z), θ(Z), α(Z)) = (π(Z), α(Z)) from I into V satisfying (10), or equivalently

Φ′(Z) = S[Φ(Z)], for Z ∈ I. The corresponding curve in <3 — strictly, the image set

Φ̆ = {Φ(Z) : Z ∈ I} parametrised and ordered by I — is here called the trajectory of

Φ (on I). In particular, a given point (p♦, Z♦) defines a unique solution Φ(Z; p♦, Z♦)

‘through’ that point, i.e. Φ(Z♦; p♦, Z♦) = p♦, and this solution may be continued on a

maximal interval I(p♦, Z♦) = (Z−(p♦, Z♦), Z+(p♦, Z♦)). Sometimes we call Z♦ the start

of the solution through p♦. If Z♦ = 0, we write Φ(Z; p♦, 0) as Φ0(Z; p♦) and I(p♦, 0) as

I0(p♦). Since S is autonomous, we have for Z♦ ∈ <,

(6.11) Φ(Z; p♦, Z♦) = Φ0(ζ; p♦) where ζ = Z − Z♦ ∈ I0(p♦) = I(p♦, Z♦)− Z♦.

The corresponding trajectory is denoted Φ̆(p♦, Z♦), or simply Φ̆0(p♦) if Z♦ = 0; cf.(5.22)

above, also [B] Section 3, fn.5.1

The function (or family of functions)

(6.12) Φ0(Z; p) = (Φ0
Zp : Z ∈ I0(p), p ∈ V)

is usually called the (global) flow defined on V by S and the pair (V, (Φ0
Zp)) is a dy-

namical system; (an incomplete system, meaning that not all solutions can be continued

to the whole of <; cf. Hirsch [1984], p.27). The definition of flow in terms of solutions

starting with Z♦ = 0 is customary, but an alternative parametrisation is often useful

here. Writing p♦ = (π♦, α♦), we choose for Z♦ the value

(6.13) Z♦ = A−1(α♦) — or simply A−1α♦ —

1Of course, the ‘unparametrised’ image set Φ(Z; p♦, Z♦) does not depend on Z♦; however we need
terminology which keeps track of intervals of definition because not all solutions can be continued to
the whole of <. This difficulty could be avoided by modifying our systems, but that would complicate
the geometric picture.
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and define, using (11)

Φ♦(Z; p♦) = Φ(Z; p♦, A
−1α♦) = Φ0(Z − A−1α♦; p♦),(6.14)

Z ∈ I♦(p♦) = I(π♦, A
−1α♦) = I0(p♦) + A−1α♦,

so that

(6.14a) Φ♦(A−1α♦; p♦) = p♦

i.e. Φ♦(Z; p♦) is the solution of S ‘through’ (p♦, Z♦) = (π♦, α♦, A
−1α♦). The flow on

V = U× (0, ψ′0) may therefore also be represented by

(6.14b) Φ♦(Z; p) = (Φ♦Zp : Z ∈ I♦(p), p ∈ V).

Now let U be {θ ≥ 0} or {θ > 0} and p♦ = (π♦, α♦) ∈ U × (0, ψ′0). Note that the

solution of (6) with the initial condition α(Z♦) = α♦ = A(Z♦) is just α(Z) = A(Z) for

all Z ∈ <, i.e. γ = 0 in (8). Referring to the notation of Section 5(i) and comparing

definitions for S and S, it is seen that the maximal interval of definition I♦(p♦) for

Φ♦(Z; p♦) coincides with the maximal interval I(π♦, Z♦) for φ(Z; π♦, Z♦) and that, for

Z in this interval, the solution Φ♦(Z; p♦) = Φ(Z; p♦, A
−1α♦) coincides with the vector

of functions whose components are (i) the solution φ(Z; π♦, Z♦) and (ii) the solution

α(Z; Z♦) = A(Z) of (6). We write this relation for short as

(6.15a)

Φ♦(Z; p♦) = Φ♦(Z; π♦, α♦) = 〈φ(Z; π♦, A
−1α♦), A(Z)〉, Z ∈ I♦(p♦) = I(π♦, A

−1α♦),

or just

(6.15b) Φ̆♦(p) = Φ̆♦(π, α) = 〈φ̆(π,A−1α), A〉.

Obviously the map

(6.16) Ξ: p = (π, α) 7→ (π,A−1α), U× (0, ψ′0) 7→ U×<,

each space being equipped with its Euclidian metric, is a C1-diffeomorphism and induces

a bijection

(6.17) Φ̆♦(p) = Φ̆♦(π, α)↔ φ̆(π,A−1α), I♦(π, α)↔ I(π,A−1α),
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from trajectories of S to paths of S. Indeed, the projection of the trajectory Φ̆♦(π, α)

into the plane of the variables π = (h, θ) coincides with the path φ̆(π,A−1(α)). Thus

the geometric analysis of S in [B] translates to S with only minor changes of notation.

Second Step. Given the system (10) or (10a) defined on a domain V = U× (0, ψ′0), we

wish to extend the definition to U× [0, ψ′0] in such a way that

F(h, θ, 0) = F∞(h, θ), F(h, θ, ψ′0) = F−∞(h, θ),(6.18a)

J(0) = J(ψ′0) = 0,(6.18b)

and that the extended system is C1, i.e. the triple S = (F, G, J) together with its

first-order partial derivatives is continuous (with ‘inward’ continuity at boundary points

belonging to U× [0, ψ′0]).

Starting with (18b), we note that the definition (2) of r(α) together with a−1(ψ′0) = 0

yields the limit r(ψ′0) = 1. For α = 0 we have

lim r(α) = lim[ψ′[a−1(α)]/α] α→ 0

= lim[ψ′(K)/a(K)] K = a−1(α)→∞

= r0

as defined by (5.10), and by assumption 0 ≤ r0 < 1. Thus, setting

r(0) = r0, r(ψ′0) = 1, hence(6.19)

αr(α) = 0 when α = 0, αr(α) = ψ′0 when α = ψ′0,

we have J(0) = J(ψ′0) = 0, with inward continuity at these points. The same calculations

together with the values of A(±∞) andM(±∞) given by (5.6) yield (18a) and the inward

continuity of F along α = 0 and α = ψ′0. As regards the partial derivatives, these are

set out at (23) below. It is seen that inward continuity of the partials requires — in

addition to the preceding results — the existence of limits for

(αr)′ = (d/dα)(αr) = r(α) + αr′(α) as α ↓ 0 and as α ↑ ψ′0.
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Now, using the definition (2) and (5.5–5.5a) we have

(αr)′ = (d/dα)ψ′[a−1(α)]

= ψ′′(K)/a′(K)

= Kψ′′(K)/[ψ′(K)− a(K)] evaluated at K = a−1(α).

= M ′(Z)/A′(Z) evaluated at Z = lnK.

By (5.12) and (5.9), the last expression converges to r0 as α→ 0, K →∞, and converges

to 2 as α→ ψ′0, K → 0. Thus, setting

(αr)′ = r0 when α = 0(6.20)

(αr)′ = r(ψ′0) + ψ′0 · r′(ψ′0) = 1 + ψ′0 · r′(ψ′0) = 2 when α = ψ′0,

the system S is C1 on U× [0, ψ′0].
2

The previous definitions of solution, trajectory and flow up to and including (12),

as well as the definition of dynamical system following (12), continue to apply with

V = U × [0, ψ′0]. Now let U be {θ ≥ 0} or {θ > 0}. Bear in mind that a solution

of S has α(Z) = 0 for all Z ∈ < or for none, similarly with α(Z) = ψ′0. The formula

Z = A−1(α) makes sense for α = 0 and α = ψ′0 if we allow Z = ±∞. Thus the map Ξ in

(16) extends to a map from U× [0, ψ′0] to U× [−∞,∞].

The definition of Φ♦(Z; p♦) does not make sense for points of the form p♦ = (π♦, 0)

or p♦ = (π♦, ψ
′
0), so that the map Φ̆♦(π, α) ↔ φ̆(π,A−1(α)) in (17) does not extend.

However, the solution of S through a point p♦ = (π♦, 0), with start Z♦ ∈ <, agrees with

the vector function whose components are the solution of S∞ through (π♦, Z♦) and the

zero function 0. Equivalently, choosing Z♦ = 0, we have

(6.21a) Φ0(Z; π♦, 0) = 〈φ0
∞(Z; π♦),0〉, Z ∈ I0(π♦, 0) = I0

∞(π♦), π♦ ∈ U,

or simply

(6.21b) Φ̆0(π♦, 0) = 〈φ̆0
∞(π♦),0〉.

Similarly, the solution of S through (π♦, ψ
′
0) with start Z♦ corresponds to the solution

2Remarks: (i) Regarding the value 2, see eq.(5.9) and S.5 fn.2 above.
(ii) Note that (6.20) does not define a value for r′(0).
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of S−∞ through (π♦, Z♦). With notation analogous to (21a–b) we have

(6.22a) Φ0(z; π♦, ψ
′
0) = 〈φ0

−∞(Z; π♦),ψ′0〉, Z ∈ I0(π♦,ψ
′
0) = I0

−∞(π♦), π♦ ∈ U,

where ψ′0 is the function constant at ψ′0, or

(6.22b) Φ̆0(π♦, ψ
′
0) = 〈φ̆0

−∞(π♦),ψ′0〉.

The Jacobian matrix of S at an arbitrary point p = (h, θ, α) = (π, α) in U× [0, ψ′0]

can now be written as follows, (using ‘inward’ derivatives in case p is a boundary point

cf.S.5, fn.3):

∆S(p) =

 Fh Fθ Fα

Gh Gθ 0

0 0 Jα

(6.23)

=

 (2/σ2)(bσ2h+ θ −Q− α) (2/σ2)h (2/σ2)(−h+ (αr(α))′/b)

θ h− 1 0

0 0 −1 + (αr(α))′

 .
We write this matrix simply as ∆ = [aij] if there is no ambiguity. It should be compared

with the expression in [B](3.15) for the Jacobian matrix of S̄ = (F̄ , G) at a point π in

U; the first two entries in the first two columns of (23) are the same as in (3.15), except

that Fh is obtained from F̄h on replacing Q̄ by Q + α; thus values of Fh with α = 0

(α = ψ′0) correspond to values of Fh with Z =∞ (Z = −∞).3 Two eigenvalues of ∆ can

be obtained from [B](3.16), according to Type, on replacing Q̄ there by Q + α, m̄ by

m− α. We denote these by

(6.24) λ± = λ±(p) = λ±(π, α) = λ±(π, Z), where Z = A−1(α).

(We omit details, but explicit expressions in the case of saddle points are given in the

text and in Table 1 of [B], Section 3, also in Table 2 below). A third eigenvalue is given

3Explicitly: Here F̄ (h, θ) = bh2 + (2/σ2)h[θ− Q̄]− (2/bσ2)m̄, as defined in [B](3.3a), should be read
as the function obtained from

F (h, θ, Z) = bh2 + (2/σ2)h[θ −Q−A]− (2/bσ2)[m−M ],

where A = A(Z), M = M(Z), by fixing Z = Z̄, hence A = A(Z̄), M = M(Z̄), and setting Q̄ = Q+A(Z̄),
m̄ = m −M(Z̄) cf.[B](3.6–3.8); here −∞ ≤ Z̄ ≤ ∞. These expressions for Q̄ and m̄ also apply to the
calculations of other parameters, including eigenvalues, in the lines from [B](3.15) to (3.23).
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by

λ3 = λ3(p) = [αr(α)]′ − 1.

In particular, using (20) we have, for arbitrary π ∈ U,

(6.25) λ3(π, 0) = r0 − 1 < 0, λ3(π, ψ
′
0) = +1 > 0.

Third Step. The preceding definitions have been stated only for α ∈ [0, ψ′0], but

sometimes it is useful to extend S so that it is a C1 system in full neighbourhoods of

points of the form p = (π, 0) or p = (π, ψ′0). Referring to (10), it is seen that both F

and J contain terms in α and αr(α), so that for this purpose we need both αr(α) and

(αr(α))′ to be continuous at α = 0 and at α = ψ′0. The simplest way to achieve this is

to prolong linearly αr(α) by using the values of its derivatives given by (20). Thus we

set

(αr(α))′ = r0,

(6.26a)

hence αr(α) = αr0, J(α) = α(r0 − 1), for α < 0;

(αr(α))′ = 2,

(6.26b)

hence αr(α) = ψ′0 + 2(α− ψ′0) = 2α− ψ′0, J(α) = α− ψ′0, for α > ψ′0;

and we similarly prolong F. With this extension, S may be regarded as defined on the

whole of <3 or on a conveniently chosen subset.4

Given a point p♦ ∈ V, the linearisation of S about p♦ is the system L(p♦) defined

4If S is to be (say) a C2 system in neighbourhoods of stationary points with α = ψ′0 and α = 0, it is
necessary to extend (αr)′′ = αr′′ + 2r′ as well as αr and (αr)′. Assuming ψ′′(0) 6= 0 and ψ′′, ψ′′′ both
continuous at and near K = 0, the procedure based on Taylor series expansion outlined above yields

(αr(α))′′ = 4[3ψ′′0 − 2ψ′′′0 ]/(ψ′′0 )3 at α = ψ′0.

(If ψ′′(0) = 0 but ψ′′′(0) 6= 0, an expression involving ψ′′′ and ψiv is obtained, and so forth.)
On the other hand, if the limits of r, (αr)′ and (αr)′′ exist as α → 0, one obtains, via l’Hôpital’s
Theorem, that

r0 = lim[ψ′(K)/a(K)] = lim[ψ′′(K)/a′(K)] = lim[Kψ′′/(ψ′ − a)] = [αr(α)]′α=0

= lim[ψ′′′(K)/α′′(K)] = lim[K2ψ′′′/(Kψ′′ − 2ψ′ + 2a)]

as k →∞, α→ 0, hence by a calculation that (αr)′′ = 0 at α = 0.
One then extends F and J by setting (αr)′′ for α > ψ′0 equal to the value for α = ψ′0, similarly (αr)′′ = 0
for α < 0. This procedure can be extended to a Cj system with j > 2.
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for p ∈ V (in matrix form) by

(6.27) (δp)′ = ∆(p♦) · (p− p♦) = ∆(p♦) · δp

where δp = p − p♦, d(δp)/dZ = (δp)′ = p′, δp = (δh, δθ, δα) = (h − h♦, θ − θ♦, α − α♦)

and the partial derivatives Fh etc. in (23) are evaluated at p♦.

The co-ordinates of stationary points of S in the plane {α = 0} are as for stationary

points of S∞, with 0 adjoined as a third co-ordinate, while stationary points of S in

the plane {α = ψ′0} are as for stationary points of S−∞ with ψ′0 adjoined. We confine

attention to those stationary points p∗ of S which correspond to 2-dimensional saddle

points of S∞ or S−∞. These may be denoted by

(6.28) p∗∞ = (π∗∞, 0) and p∗−∞ = (π∗−∞, ψ
′
0)

— cf. (5.21). They are 3-dimensional saddle points of S in the sense that for each p∗,

∆(p∗) has only real, non-zero eigenvalues, not all of the same sign, cf.fn.7 below and S.5,

fn.4, and are said to be of Type 1 or 0 according to the Type of the corresponding points

of S∞ or S−∞. (Note that they are finite points of the domain of S, not points ‘at ±∞’.)

For both Types there are two negative eigenvalues at p∗∞ and one positive, indicating

a two-dimensional stable manifold and a one-dimensional unstable manifold; at p∗−∞,

there are two positive eigenvalues and one negative, indicating a one-dimensional stable

manifold and a two-dimensional unstable manifold5. Details of the Jacobian matrices

and eigenvalues at saddle points are set out in Table 2, which extends [B] Table I. The

Jacobian entries are obtained by substituting in (23), while the eigenvalues are calculated

as in (24–25). For simplicity, it is assumed (in each of the cases displayed) that the three

eigenvalues are distinct.

5These are not quite the usual definitions for 3-dimensional saddle points, as considered, for example,
in Bonatti and Dufraine [2003]. If S∞ is Type 0, the domain of S∞ is usually taken here to be {θ ≥ 0}
— cf. fn.4 of S.5 — and then the stable manifold at π∗∞ is considered to be a manifold with boundary,
therefore so is the stable manifold at p∗∞; and similarly, if S−∞ is Type 0, for π∗−∞ and p∗−∞. Also, all
the saddle points (6.28), of either Type, are boundary points unless the definition of S is extended as
in the ‘third step’ above.
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 (2/σ2)(m/b+ 1
2
bσ2) (2/σ2) (2/σ2)(r0/b− 1)

n 0 0
0 0 r0 − 1


λ±σ

2 = m/b+
1

2
bσ2 ± [(m/b+

1

2
bσ2)2 + 2nσ2]

1
2

λ+ > 0 > λ−, λ3 = r0 − 1 < 0

Data for Saddle Point at p∗∞ = (1, n, 0), n > 0 (Type 1)

 (2/σ2)[(m− ψ′0)/b+ 1
2
bσ2] (2/σ2) (2/σ2)(2/b− 1)

N 0 0
0 0 1


λ±σ

2 =
1

2
bσ2 + [(m− ψ′0)/b]± [{1

2
bσ2 + (m− ψ′0)/b}2 + 2Nσ2]

1
2

λ+ > 0 > λ−, λ3 = ψ′0r
′(ψ′0) = 1

Data for Saddle Point at p∗−∞ = (1, N, ψ′0), N > 0 (Type 1)

 (2/σ2)(bσ2h+
∞ −Q) (2/σ2)h+

∞ (2/σ2)(r0/b− h+
∞)

0 h+
∞ − 1 0

0 0 r0 − 1


λ+ = (2/σ2)(bσ2h+

∞ −Q) > 0; bσ2h+
∞ = Q+ [Q2 + 2mσ2]1/2

λ− = h+
∞ − 1 < 0 λ3 = r0 − 1 < 0

Data for Saddle Point at p∗∞ = (h+
∞, 0, 0), q > 0 > n, b > 1 (Type 0)

 (2/σ2)(bσ2h−−∞ −Q− ψ′0) (2/σ2)h−−∞ (2/σ2)(2/b− h−−∞)
0 h−−∞ − 1 0
0 0 1


λ+ = (2/σ2)(bσ2h−−∞ −Q− ψ′0) < 0; bσ2h−−∞ = Q+ ψ′0 − [(Q+ ψ′0)

2 + 2(m− ψ′0)σ2]1/2

λ− = h−−∞ − 1 > 0

λ3 = ψ′0r
′(ψ′0) = 1

Data for Saddle Point at p∗−∞ = (h−−∞, 0, ψ
′
0), q > 0 > N , b < 1 (Type 0)

table 2: data for saddle points of S
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If p∗ is one of the saddle points p∗∞ or p∗−∞, the linear o.d.e. system (6.27) may be

solved using the data in Table 2, and equations obtained in the variables (δh, δθ, δα)

which characterise the stable and unstable subspaces L.(p∗) and L/(p∗) of L(p∗), i.e. the

invariant subspaces corresponding respectively to the negative and positive eigenvalues

at p∗.6

6Further symmetries between results given in Table 2 for p∗∞ and p∗−∞ may be obtained as follows:
for Type 1, recall that θ̄1 is defined as the solution of F̄ (1, θ) = 0, see [B](3.4), so that θ̄1 = n for p∗∞
and θ̄1 = N for p∗−∞, see [B](3.4) and (3.7–8). In each of the first two blocks of the Table, we have
λ+ > 0 > λ−; the leading entry a11 on the diagonal is equal to λ+ +λ−; also λ+λ− = −2θ̄1/σ2, or, since
θ̄1 = a21 and 2/σ2 = a12, λ+λ− = −a21a12. [Cf. below, eqns(6.48) and (6.48)/.] Further, according to
(6.20), (αr)′ = r0 when α = 0, Z =∞, while (αr)′ = 2 when α = ψ′0, Z = −∞, so that λ3 = (αr)′ − 1
in each block of Table 2. Both matrices for Type 1 Saddle Points may therefore be written λ+ + λ− 2/σ2 (2/σ2)[(1 + λ3)/h− 1]

θ̄1 0 0
0 0 λ3

 .
For Type 0 Saddle Points, corresponding to the third and fourth blocks in Table 2, a11 = λ+, a22 = λ−

and λ− = h− 1 where h = h+
∞ for p∗∞, h = h−−∞ for p∗−∞, so that both matrices are of the form λ+ (2/σ2)(1 + λ−) (2/σ2)[(1 + λ3)/b− (1 + λ−)]

0 λ− 0
0 0 λ3

 .
Unfortunately the conventions established in [B], see (3.23a, b), lead to λ+ > 0 > λ− for p∗∞ but
λ+ < 0 < λ− for p∗−∞.
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(ii) Representation of Stable and Unstable Solutions and Sets.

We turn now to a discussion of the stable and unstable sets/manifolds at saddle points of

S, and their representation as graphs of differentiable functions. We begin with notation

and representation of manifolds by functions, then turn to a discussion of smoothness

in (iii) below.7

Let p∗ be p∗∞ or p∗−∞. A solution Φ0(Z; p♦) of S, defined for Z ≥ 0 and converging

to p∗ as Z → ∞, is called a stable solution at p∗. Similarly a solution Φ0(Z; p♦) of S

defined for Z ≤ 0 and converging to p∗ as Z → −∞ is called an unstable solution at p∗.

Given a set V ⊂ <3 we define

M.(S,V, p∗) = M.(p∗) = {p♦ ∈ V : Φ0(Z; p♦)→ p∗ as 0 ≤ Z ↑ ∞},(6.29a)

M/(S,V, p∗) = M/(p∗) = {p♦ ∈ V : Φ0(Z; p∗♦)→ p∗ as 0 ≥ Z ↓ −∞};(6.29b)

7Some slightly informal reminders concerning stable and unstable manifolds at a saddle point of a
dynamical system (autonomous system of o.d.e.s) may be useful. To avoid introducing new notation,
the system is again called S and is taken to be 3-dimensional, and related notation is also kept; but
essentially the statements which follow are quite general for n-dimensional systems.

Let p∗ be a stationary point of S, and assume that S is defined in a neighbourhood N of p∗ in <3. If
the Jacobian matrix of S at p∗ has no complex eigenvalues with real part zero, p∗ is called an elementary
stationary (or critical) point. If the matrix has only real, non-zero eigenvalues λi, not all of the same
sign, p∗ is called a saddle point of S, and according to the Stable/Unstable Manifold Theorem (SMT)
there exist local stable and unstable manifolds M. and M/ whose dimensions are equal respectively
to the number of negative and positive eigenvalues λi. Here ‘local’ means ‘restricted to some (possibly
smaller) neighbourhood’ which we still call N, while the local stable and unstable manifolds comprise
those points p ∈ N which are starts of solutions of S converging respectively to p∗ as Z ↑ ∞ and as
Z ↓ −∞. These manifolds are as smooth as S, say C1 for present puposes.

To simplify notation, it is often convenient to assume that the saddle point p∗ is the origin 0 of <3,
or equivalently to replace p by δp = p− p∗ and N by N− p∗. Consider the system L = L(p∗) obtained
by linearising S about p∗, i.e. the system defined for (say) δp ∈ <3 by δp′ = ∆(p∗) ·δp, cf.(6.27), and let
L. and L/ be the linear subspaces associated with the negative and positive λi. The SMT asserts that
the local stable and unstable manifolds at 0 are graphs of C1 functions ψ.(δp) and ψ/(δp), mapping
respectively a neighbourhood of the origin in L. (L/) into L/ (L.), vanishing at the origin, tangent
there to L. (L/), and satisfying Dψ(0) = 0.

The local manifolds at p∗ are C1 sub-manifolds of <3 (in fact, embedded open disks through p∗ of
the appropriate dimensions). Given a domain V = U×<, e.g. V = <3, there are also so-called global
stable/unstable manifolds comprising all points p ∈ V which are starts of solutions converging to p∗

as Z ↑ ∞ and as Z ↓ −∞. Standard theorems assert only that these are ‘injectively immersed’ C1

submanifolds (of the appropriate dimensions);see Chillingworth [1976] for definitions.
In the situations of interest here, the saddle point p∗ will often be a boundary point of the domain

V of S, so that the manifolds may be ‘with boundary’ and the preceding results are to be modified as
indicated in [B]S.3, fn.13 and in S.6,fn.5 above. Subject to this, our manifolds will turn out to be true
(not just injectively immersed) submanifolds.

For more on SMTs, see for example Chillingworth [1976], Abraham and Robbin [1967] Section 27
and Appendix C by Al Kelley, also Palis and de Melo [1982] Section 6, Ruelle [1988] Section 6, Shub
[1987] Chapter 5. Also Hirsch [1976], Ch 1, S.4 re manifolds with boundary.
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M.(p∗) is called a stable set, M/(p∗) an unstable set (at p∗ w.r.t. V) — (a stable/unstable

manifold if it is a differentiable manifold, possibly with boundary). If p∗ = p∗∞, we write

M.(p∗) as M.
∞, M/(p∗) as M/

∞, similarly for p∗ = p∗−∞.

Now let p∗ = p∗∞ until further notice (so that the subscript ∞ is usually omitted);

we set out changes for p∗−∞ in (v) below. Recall that

U+ = {h > 0, θ ≥ 0} and U++ = {h > 0, θ > 0}

see (5.25), we write M.
∞(V) as

M.
⊕ if V = U+× [0, ψ′0),(6.30a)

M.
+ if V = U+× (0, ψ′0),(6.30b)

M.
++ if V = U++× (0, ψ′0),

M.
0 if V = U+× [0].(6.30c)

Definition (6.29) should be compared with (5.33–34). If p∗∞ is Type 1, M.
+ = M.

++.

When the meaning is clear, we sometimes omit one or several of the following: the

symbol S; the clause ‘as Z → ∞’; the subscripts on p♦, p∞, M.
∞; the superscripts on

M., &+.

If N is a neighbourhood of p∗ in <3, we sometimes replace V by N ∩ V, M by

M(N) = M ∩N with appropriate subscripts in the notation (29–30), e.g.

(6.30d) N⊕ = N ∩V⊕, M(N⊕) = M ∩N⊕ etc.

The condition Φ0(Z;p♦)→ p∗∞ can be replaced in (29) by Φ♦(Z;p♦)→ p∗∞ if V is as

in (30b); this follows from (14) since 0 < α♦ is equivalent to Z♦ = A−1(α♦) < ∞. On

making this replacement and taking into account (14a) and (16), it is seen that M.
+ is

the inverse image under Ξ ofM.
+ — see (5.35) and (5.39a), and we know that the latter

set is the graph of the function f . Consequently

(6.31) M.
+(p∗∞) = {p = (h, θ, α) : h = f(θ, A−1α), 0 .+ θ < θ+(A−1α), 0 < α < ψ′0};

similarly

(6.31a) M.
++(p∗∞) = {p = (h, θ, α) : h = f(θ, A−1α), 0 < θ < θ+(A−1α), 0 < α < ψ′0}
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is the inverse image under Ξ of M.
++, see (5.35) and (5.39b).

Now consider M.
0. According to (21a), Φ0(Z; π, 0) = 〈ϕ0

∞(Z; π),0〉, hence

Φ0(Z; π, 0)→ p∗∞ iff ϕ0
∞(Z; π)→ π∗∞.

Taking into account (29a), (30c), (21a), also (5.23), (5.26a) we obtain

M.
0 = {p = (h, θ, 0) : h > 0, θ ≥ 0, ϕ0

∞(Z;h, θ)→ π∗∞}(6.32)

= {p = (h, θ, 0) : h = f∞(θ), 0 �+ θ < θ+(∞)}

= {p = (h, θ, 0) : h = f∞(θ), θ ∈ dom f∞},

or (with some abuse of notation) M.
0 = 〈M.

∞,0〉.

Combining the definitions of f(θ, Z) and f∞(θ), we now write

f̃(θ, α)
.
= f(θ, A−1α) for (θ, α) ∈ dom f̃ ,(6.33)

where A−10 =∞, f(θ, A−10) = f∞(θ),

dom f̃
.
= {(θ, α) : 0 .+ θ < θ+(A−1α), 0 ≤ α < ψ′0}.

Combining (31) and (32) yields

(6.34) M.
⊕ = M.

+ ∪M.
0 = {(h, θ, α) : h = f̃(θ, α), (θ, α) ∈ dom f̃}.
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(iii) Local C1 Properties of Stable Sets and Representing Functions.

We now consider smoothness properties of stable sets at p∗ = p∗∞ (of either Type) and

of the representing function f̃ — first ‘locally’ (i.e. on suitable neighbourhoods of p∗)

and then ‘globally’ (i.e. on the whole domain of definition of each stable set).

According to the ‘local’ stable manifold theorem (s.m.t.) for elementary critical

points — see fn.7 — there exists a neighbourhood N of p∗ w.r.t. V such that M(N) =

M.(S,N) is a two-dimensional C1 sub-manifold of <3 (a C1 surface), possibly with

boundary. However, our main concern here is not with the local manifolds as such,

but with the properties of f̃ (and hence of f) which are needed for the theory of the

boundary value problem and the consumption function. We want to show that f̃ is a C1

function of (θ, α), so that in particular we may use its partial derivatives to approximate

the function near p∗, and hence obtain asymptotic approximations of f with small θ−θ∗

and large positive Z. Differentiability will also be required in Part D for the discussion

of perturbations of the boundary value problem.

The local s.m.t. is usually proved for a system of o.d.e.s defined on a neighbourhood

of a critical point situated at the origin of co-ordinates with the matrix of the linear part

of the vector field in real canonical form. We start by setting out the transformations

required to display S and the s.m.t. in the form which we require. To be specific, we

assume that the domain of S is V = U+ × [0, ψ′0).

Let L = L(p∗) denote the linearisation of S about p∗ = p∗∞, i.e. the system (27) with

p♦ = p∗∞. We write this for short as8

δ′ = ∆ · δ, δ ∈ V, where(6.35)

δ = (δh, δθ, δα) = (h− h∗, θ − θ∗, α− α∗) = p− p∗,

and ∆ = ∆S(p∗) = [aij] is the matrix appearing in the first or the third block of Table 2,

depending on the Type of p∗; of course, α∗ = α∗∞ = 0 for both Types. Note that, for

p = p∗ + δ in a neighbourhood N (w.r.t. V) of p∗, we may write S(p) = ∆(p∗)δ+H(δ),

where H = (Hh, Hθ, Hδ) is a vector-valued C1 function which vanishes together with

its first order partial derivative at δ = 0 (Taylor’s Theorem).

8The prime stands for differentiation with respect to Z, as usual. The notation will not distinguish
explicitly between column and row vectors.
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For each Type, the matrix ∆ has real, non-zero eigenvalues, one positive and two

negative, so that the real canonical form is a diagonal matrix

(6.36) Λ = diag[λ+, λ−, λ3],

which is uniquely determined up to the order of the diagonal elements, see Palis and

de Melo [1982] Ch.2 S.2, Gantmacher [1958] Ch.VI. Thus there exists a non-singular

transformation matrix T (of order 3) such that

(6.37a) T−1 ∆ T = Λ;

suitable matrices for the two Types are exhibited in Table 3.9

9To calculate T−1, write ∆ = T ΛT−1 as T−1∆−ΛT−1 = 0, and consider this matrix equation as a
system of 9 linear homogeneous equations with 9 unknowns; in general, the solution is not unique and
one has to choose a solution with |T−1| 6= 0, cf. Gantmacher [1958]. Normally this method is laborious,
but here there are enough zeros to make it straightforward.
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T−1
1 = [τij]1 =

 1 a12/λ+ a13/ (λ+ − λ3)
λ−/a12 1 a13λ−/a12 (λ− − λ3)
0 0 1



T−1
0 = [τij]0 =

 1 −a12 (λ− − λ+) −a13/ (λ3 − λ+)
0 1 0
0 0 1



table 3: transformation matrices T−1 to real canonical form — see
(6.37a)

notation:

δ̂ = T−1δ, δ̂ = (η, ξ, χ), δ = p− p∗, p = (h, θ, α).

T−1
1 and T−1

0 apply to Type 1 and Type 0 saddle points respectively.

Values of aij and λk for T−1
1 are obtained from the first block of Table 2 if p∗ = p∗∞ =

(1, n, 0), from the second block if p∗ = p∗−∞ = (1, N, ψ′0).

Values of aij and λk for T−1
0 are obtained from the third block of Table 2 if p∗ = p∗∞ =

(h+
∞, 0, 0), from the fourth block if p∗ = p∗−∞ = (h−−∞, 0, ψ

′
0).

The aij denote matrix entries and the λk eigenvalues in the relevant block of Table 2.

For completeness we also set out the inverse matrices T1 = [tij]1 and T0 = [tij]0.

T1 = [tij]1 =

 λ+/(λ+ − λ−) −a12/(λ+ − λ−) a13λ3/(λ− − λ3)(λ+ − λ3)
−λ+λ−/a12(λ+ − λ−) λ+/(λ+ − λ−) −a13λ+λ−/a12(λ− − λ3)(λ+ − λ3)

0 0 1



T0 = [tij]0 =

 1 a12/(λ− − λ+) a13/(λ3 − λ+)
0 1 0
0 0 1
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Writing

(6.37b) T−1δ = δ̂ = (η, ξ, χ), T−1V = V̂

induces a linear transformation of co-ordinates such that the system L becomes

L̂ : δ̂′ = Λ · δ̂, δ̂ ∈ V̂ or(6.38)

η′ = λ+η, ξ′ = λ−ξ, χ′ = λ3χ.

The vectors of the form (η, 0, 0) span the unstable linear subspace L̂/ for L̂, while the

vectors (0, ξ, χ) span the stable linear subspace L̂.. The system S referred to the new

co-ordinates (with origin δ̂∗ = T−1p∗ = 0) is denoted Ŝ and has the form

(6.39a) δ̂′ = Λ · δ̂ + Ĥ(δ̂), δ̂ ∈ V̂,

where Ĥ = (Ĥη, Ĥξ, Ĥχ) is a vector-valued C1 function which vanishes together with

its first order derivatives at δ̂∗ = 0. Explicitly, this system has the form

(6.39b) η′ = λ+η+Ĥη(δ̂), ξ′ = λ−ξ+Ĥξ(δ̂), χ′ = λ3χ+Ĥχ(δ̂) where δ̂ = (η, ξ, χ) ∈ V̂;

it is clear that χ = δα = α− α∗∞ = α and Ĥχ depends only on χ.

If N̂ is a neighbourhood of δ̂∗ (w.r.t. V̂) in the new co-ordinates, then N = {p =

p∗ + T · δ̂, δ̂ ∈ N̂} defines a neighbourhood of p∗ (w.r.t. V) in the old co-ordinates.

Extending our notation in an obvious way, let

(6.40a) M̂.(Ŝ, N̂)
.
= {δ̂ ∈ N̂ : Φ̂0(Z; δ̂)→ 0 as Z →∞},

where Φ̂0(Z, δ̂) is the flow on N̂ defined by Ŝ. Then

(6.40b)

M.(S,N) = {p = p∗ + T δ̂, δ̂ ∈ M̂.(Ŝ, N̂)} = {p ∈ N : Φ0(Z; p)→ p∗ as Z →∞}.

The local s.m.t. for the critical point of the system Ŝ at the origin in <3 can now be

stated as follows (cf.fn.7 above and Abraham and Robbin [1967] S.27):
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(6.40c) Proposition 14(α)(i) (Local Stable Manifold for Ŝ at δ̂∗ = 0).

There exist

(1) a number γ̂ ∈ (0, ψ′0) and a neighbourhood of (ξ∗, χ∗) in <2 of the form

N̂ = N̂(γ̂)
.
= {(ξ, χ) : ξ2 + χ2 < γ̂2, ξ ≥ 0, 0 ≤ χ < ψ′0},

(2) a neighbourhood N̂ = N(γ̂) (w.r.t. V̂) of δ̂∗ in <3,

(3) a function of the form η = w(ξ, χ), defined and C1 for (ξ, χ) in N̂, with values η

such that δ̂ = (η, ξ, χ) is in N̂, w vanishing together with its partial derivatives wξ

and wχ at ξ = χ = 0, such that

M̂.(Ŝ, N̂) = {δ̂ = (η, ξ, χ) : η = w(ξ, χ), (ξ, χ) ∈ N̂}.

In other words, the stable manifold of Ŝ at 0, restricted to N̂, is the graph of a C1

function η = w(ξ, χ) and so is a two-dimensional C1 submanifold of <3 (with boundary),

and it is tangent at the origin to L̂.. Since M.(S,N)−p∗ is obtained from M̂.(Ŝ, N̂) by

a linear change of co-ordinates, this set also is a two-dimensional C1 submanifold and is

tangent at the origin (of the old co-ordinates) to L. = T · L̂., the stable subspace of L.

Substituting in η = w(ξ, χ) the linear expressions for (η, ξ, χ) in terms of (δh, δθ, δα)

given by (37b) and Table 3, one obtains an equation involving the latter variables which

holds for points of M.(S,N) − p∗, and hence an equation in (h, θ, α) which holds for

points of M.(S,N). The programme then is to compare this equation with the equation

h = f̃(θ, α) for points p = (h, θ, α) ∈ M.(S,N) such that (θ, α) ∈ domf̃ in order to

show that f̃ is locally C1, and to obtain estimates of its derivatives at (θ∗, α∗). For this

purpose it is convenient to consider the two Types separately.

If p∗ = p∗∞ is Type 0, i.e. p∗ = (h+
∞, 0, 0), b > 1, we have

(6.41a) δh = h− h+
∞, δθ = θ ≥ 0, δα = α− α∗∞ = α ∈ [0, ψ′0).

Table 3 yields

(6.41b) η = δh− δθ · a12/(a22 − a11)− δα · a13/(a33 − a11),

the aij being entries in the third block of Table 2; also note that ξ = δθ = θ, χ = δα = α.

Combining these results with η = w(ξ, χ) yields

(6.41c) h = h+
∞ + θ · a12/(a22 − a11) + α · a13/(a33 − a11) + w(θ, α).
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Denote the expression on the right of (41c) by h̃(θ, α). We may choose γ ≤ γ̂ so small

that h > 0 for p ∈ N. Then, for (θ, α) satisfying θ ≥ 0, α ≥ 0, the couple (θ, α)

belongs to dom f̃ — see (33). Since both h̃ and f̃ are uniquely defined there, we have

f̃(θ, α) = h̃(θ, α) on the common domain of the two functions. Moreover h̃ is C1, and

setting the derivative of f̃ equal to the derivative of h̃10 we conclude that

(6.42a) f̃ is C1 in (θ, α) for θ ≥ 0, α ≥ 0 such that θ2 + α2 < γ2.

This argument yields further useful results for the derivatives of f̃ and hence of f . By

the definition of f̃ ,

(6.42b) f is C1 in (θ, Z) for θ ≥ 0, Z ∈ < such that θ2 + (A(Z))2 < γ2.

Further, setting f̃ equal to (41c), differentiating partially both sides — first w.r.t. θ,

then w.r.t. α, evaluating at p∗, i.e. at θ = θ∗ = 0, α = α∗ = 0, and taking into account

that the first order partials of w vanish at this point, we obtain, using the Tables,

f̃ ∗θ = a12/(a22 − a11) = f ′∞(0) < 0, cf.[B] Table 1,(6.43)

f̃ ∗α = a13/(a33 − a11),(6.44)

and w(θ, α) = o(θ, α) in (41c),

the coefficients being taken from the third block of Table 2. Also, differentiating

f̃(θ, α) = f̃(θ, A(Z)) = f(θ, Z) w.r.t. Z and letting Z → ∞, A(Z) → 0, A′(Z) → 0 ,

we get

(6.45a) f̃α[θ, A(Z)] · A′(Z)) = fZ(θ, Z)→ 0 as Z →∞,

at least for θ ∈ [0, γ), in particular

(6.45b) lim
Z→∞

fZ(θ∗, Z) = 0.

Now suppose that p∗ = p∗∞ is Type 1, i.e. p∗ = (1, n, 0). We have

(6.46a) δh = h− 1, δθ = θ − n with θ > 0, δα = α− α∗∞ = α ∈ [0, ψ′0).

10We omit qualifications to the effect that continuous versions of the derivatives of f̃ , f , g̃, g are to
be chosen.
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Table 3 yields

η = δh+ δθ · a12/λ+ + δα · a13/(λ+ − λ3),(6.46b)

ξ = δh · λ−/a12 + δθ + δα · a13λ−/a12(λ− − λ3),

and χ = δα = α, the parameters being obtained from the first block of Table 2.

Substituting into 0 = −η + w(ξ, χ) yields

0 = −(h− 1)− (θ − n)a12/λ+ − α · a13/(λ+ − λ3)(6.46c)

+ w[(h− 1)λ−/a12 + (θ − n) + α · a13λ−/a12(λ− − λ3), α].

Since wξ and wχ vanish at ξ = χ = 0, i.e. at (h − 1) = (θ − n) = α = 0, the derivative

of the right-hand side of (46c) w.r.t. h − 1 at this point is −1, and it follows from the

Implicit Function Theorem that (46c) may be solved uniquely in the form

(6.46d) h = h̃(θ, α) = 1− (θ − n)a12/λ+ − α · a13/(λ+ − λ3) + o(θ − n, α),

where h̃ is a C1 function defined for (θ − n)2 + α2 < γ2, θ > 0, 0 ≤ α < ψ′0, with some

γ ≤ γ̂; we further choose γ so small that h̃(θ, α) > 0. Then the couple (θ, α) belongs to

dom f̃ , and noting that f̃ = h̃ on the common domain of the two functions and equating

the derivatives we conclude as above that

(6.47a) f̃ is C1 in (θ, α) for θ > 0, α ≥ 0 such that (θ − n)2 + α2 < γ2.

From (47a) we also infer that

(6.47b) f is C1 in (θ, Z) for θ > 0, Z ∈ < such that (θ − n)2 + (A(Z))2 < γ2.

Again, setting f̃(θ, α) equal to (46d), differentiating partially, first w.r.t. θ, then w.r.t.

α, evaluating at p∗ and noting that the first order partials of w vanish, yields

(6.48) f̃ ∗θ = −a12/λ+ = −2/σ2λ+ = λ−/n = f ′∞(n) < 0,

taking into account that λ+λ− = −2nσ2 and λ−/n = f ′∞(n) cf.[B] Table 1. Also

(6.49) f̃ ∗α = −a13/(λ+ − λ3) = −2(r0 − b)/bσ2(λ+ − r0 + 1),

which has the sign of b− r0 where r0 < 1. Once again, we have (45a), at least for θ > 0

21



and (θ − n)2 < γ2, also (45b). The coefficients in (48–49) are to be taken from the first

block of Table 2.

Combining the calculations for the two Types, we obtain the local s.m.t. for S in

the following form:

(6.50) Proposition 14(α)(ii) (Local Stable Manifold for S at p∗ = p∗∞ = (h∗∞, θ
∗
∞, α

∗
∞)).

Let V = U+ × [0, ψ′0). There exist

(1) a number γ ∈ (0, ψ′0) and a neighbourhood of (θ∗∞, α
∗
∞) in <2 of the form

N = N(γ)
.
= {(θ, α) : (θ − θ∗∞)2 + (α− α∗∞)2 < γ2, θ &+ 0, 0 ≤ α < ψ′0},

(2) a neighbourhood N = N(γ) (w.r.t. V) of p∗∞ in <3,

(3) a function h̃(θ, α), defined and C1 for (θ, α) ∈ N satisfying h̃(θ∗∞, α
∗
∞) = h∗∞, with

values h such that (h, θ, α) is in N, such that

M.(S,N) = {p = (h, θ, α) : h = h̃(θ, α), (θ, α) ∈ N}.

This set is a two-dimensional C1 submanifold of <3 (with boundary). Consequently the

set M.
+ — see (5.35a,b) — is a submanifold of <3 (with boundary if S∞ is Type 0).

(6.51) The functions h̃ and f̃ (and their derivatives) coincide on N,

so that f̃ is C1 on this set (allowing one-sided limits on the boundary), and

M.(S,N) = {p = (h, θ, α) : h = f̃(θ, α), (θ, α) ∈ N}

is a two-dimensional C1 submanifold of <3 with boundary.

If in the preceding statements we replace V, N, N, by V++ = U++ × (0, ψ′0),

N++ = N ∩ {θ > 0, α > 0}, N++ = N ∩V++, then for γ small enough,

f̃(θ, α) = f(θ, A−1α) is defined and C1 on N++(γ),(6.52)

with values h = f̃(θ, α) such that (h, θ, α) ∈ N++,

M.(S,N++) = {p = (f̃(θ, α), θ, α) : (θ, α) ∈ N++(γ)},

and this set is a two-dimensional C1 submanifold of <3 (an embedded open disk, or

surface). Consequently,M.
++ — see (5.30b) — is also a two-dimensional C1 submanifold

of <3.
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The partial derivatives of f̃ evaluated at (θ∗∞, 0) are given (according to Type) by

(6.43–44) and (6.48–49) respectively.

The preceding argument also establishes the following results:

Corollary 14(i)(α). The stable manifold of S at p∗∞ (rich economy) may be ap-

proximated to first order ‘locally’ — i.e. for (θ, α) ∈ N⊕(γ) — by an equation of the

form

h = f̃(θ, α) = h∗∞ + (θ − θ∗∞)f̃ ∗θ + (α− α∗∞)f̃ ∗α + o(θ − θ∗∞, α− α∗∞),(6.53)

where h∗∞ = h+
∞, θ

∗
∞ = 0, α∗∞ = 0 for Type 0,

h∗∞ = 1, θ∗∞ = n, α∗∞ = 0 for Type 1.

Corollary 14(ii)(α). The function f(θ, Z) is C1 for

(6.54) θ �+ 0, Z ∈ < such that (θ − θ∗∞)2 + (A(Z))2 < γ2

for γ small enough. For sequences (θn, Zn) satisfying (54),

θn → θ �+ 0, Zn →∞

implies

f(θn, Zn)→ f∞(θ), fθ(θn, Zn)→ f ′∞(θ), fZ(θn, Zn)→ 0.
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(iv) Global C1 Properties of Stable Sets/Manifolds and Representing Functions.

Proposition 15(α) (Global Stable Manifold).

(i) The function f̃ is C1 on its domain {(θ, α) : 0 .+ θ < θ+(A−1α), 0 ≤ α < ψ′0} —

see (6.33).

(ii) The function f̃ is C1 on the interior of its domain i.e. on {(θ, α) : 0 < θ <

θ+(A−1α), 0 < α < ψ′0} — see (6.31a).

Proof. For brevity, we prove only (ii), the proof of (i) being similar if allowance is made

for boundary points. Let V = V++ = U++ × (0, ψ′0) and write M.
++ as M for short.

Let p̄1 = (π̄1, ᾱ1) = (h̄1, θ̄1, ᾱ1) ∈M; then p̄1 > 0, and p̄1 is the start of a solution stable

at p∗ = p∗∞ and satisfies h̄1 = f̃(θ̄1, ᾱ1), or equivalently h̄1 = f(θ̄1, Z̄1) with Z̄1 = A−1ᾱ1.

Now let γ ∈ (0, ψ′0), N = N++(γ) = {(θ, α) : (θ−θ∗∞)2+(α−α∗∞)2 < γ2, θ > 0, α > 0}
be a neighbourhood of (θ∗∞, α

∗
∞) in <2, N = N(γ) a neighbourhood of p∗ in <3, such

that γ, N, N satisfy the conditions of Prop. 14(α)(ii). Then f̃(θ, α) is defined on N with

(f̃(θ, α), θ, α) ∈ N, and M ∩N is a two-dimensional submanifold of <3.

Since p̄1 is the start of a solution Φ0(ζ; p̄1) converging to p∗∞ as ζ →∞, we may choose

ζ̄ large enough so that Φ0(ζ̄; p̄1) = p̄0 = (h̄0, θ̄0, ᾱ0) is in the ‘local’ stable manifold M∩N.

Then p̄0 > 0, (θ̄0, ᾱ0) ∈ N and h̄0 = f̃(θ̄0, ᾱ0) = f(θ̄0, Z̄0) with ᾱ0 = A(Z̄0) = A(Z̄1 + ζ̄).

Choose points (θ0, α0) in a neighbourhood N0 of (θ̄0, ᾱ0) in <2, small enough so that

the points p0 = (h0, θ0, α0) with h0 = f̃(θ0, α0) and (θ0, α0) ∈ N0 form a set N0 ⊂M∩N

in <3. The points p0 ∈ N0 are ‘stable’ starts for S, (or equivalently the corresponding

points (π0, Z0) = (h0, θ0, Z0) with h0 = f(θ0, Z0), A(Z0) = α0 are forward special starts

for S). Evidently the parametrisation (θ0, α0) 7→ p0 = (f̃(θ0, α0), θ0, α0), N0 7→ N0, is

C1 and bijective.

Consider next the points of the form

N1 = {p1 = Φ0(−ζ̄ , p0), p0 ∈ N0}, p1 = (h1, θ1, α1).

If γ, hence N0, is small enough, these points will be close enough to p̄1 so that h1 > 0

(and of course θ1 > 0 and 0 < α1 < ψ′0). Also, since M is invariant, the points of N1

belong to M, hence belong to the domain of f̃ and satisfy h1 = f̃(θ1, α1), (or equivalently

h1 = f(θ1, Z1), Z1 = A−1(α1)).
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Since p0 7→ p1 is C1 and bijective, (θ0, α0) 7→ p1 defines a C1 parametrisation of N1

by means of N0. Write this as p1 = τ(θ0, α0), or in more detail

(6.55) h1 = τh(θ0, α0), θ1 = τ θ(θ0, α0), α1 = τα(α0);

all the τ i are C1, and the first equation is dependent because h1 = f̃(θ1, α1).

Now recall that, according to [B] Prop. 9(β) (with slightly different notation), if

(hi0, θ
i
0, Z0), i = a, b, are points of U++ ×< with 0 < hb0 ≤ ha0 and 0 < θa0 ≤ θb0 (with the

same Z0), then on any interval of the form Z0 > Z > Z1 > −∞ we have, for the solutions

φi(Z) = φ(Z;hi0, θ
i
0, Z0) = (hi(Z), θi(Z)) of S,

that hb(Z) < ha(Z) and θa(Z) < θb(Z), provided that both solutions exist on [Z1, Z0]

and the h-co-ordinate remains positive for at least one of the solutions. (This ‘order-

preserving’ result follows from the ‘co-operative’ property of S, i.e. Fθ > 0 and Gh > 0,

in the positive quadrant; but note that in general S is not co-operative, because Jα need

not have definite sign.)

In the present situation, this result implies that ∂θ1/∂θ0 = ∂τ θ(θ0, α0)/∂θ0 > 0.

Also, ∂α1/∂α0 = ∂τα(α0)/∂α0 > 0, while ∂α1/∂θ0 = 0 since α does not depend on θ.

Consequently the Jacobian determinant

∂(θ1, α1)

∂(θ0, α0)
=

∣∣∣∣∣∂θ1/∂θ0 ∂θ1/∂α0

∂α1/∂θ0 ∂α1/∂α0

∣∣∣∣∣ =
∂θ1

∂θ0

· ∂α1

∂α0

is positive,

so that we may solve the system

θ1 = τ θ(θ0, α0), α1 = τα(α0),

uniquely in the form

(6.56) θ0 = σθ(θ1, α1), α0 = σα(α1),

with C1 functions σθ and σα, cf. Courant [1957] Vol.II, Ch.III, Goetz [1970] Ch.4. But

then, substituting into h1 = τh(θ0.α0), we obtain h1 as a C1 function of (θ1, α1) locally

near (θ1, α1), and this solution must coincide with f̃(θ1, α1). It follows that f̃ is a C1

function of (θ, α) at each point (θ1, α1) near (θ̄1, ᾱ1) in the domain of f̃ i.e. f̃ is C1 in a

(θ, α)-neighbourhood of each point of its domain, hence f is C1 in a (θ, Z)-neighbourhood
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of each point of its domain.‖

Corollary 15(i)(α). M.
++ is a two-dimensional C1 submanifold of <3, and M.

⊕ is a

two-dimensional submanifold with boundary.

These results follow from (6.31a) and (6.34) because the representation h = f̃(θ, α)

expresses one of the co-ordinates of the stable set at p∗∞ as a C1 function of the two

others.

Corollary 15(ii)(α), The function h = f(θ, Z) is C1 on its domain

{(θ, Z) : 0 .+ θ < θ+(Z), Z ∈ <}.

Hence M.
++ is a submanifold of <3 and M.

+ is a submanifold (with boundary if S∞ is

Type 0); see (5.35a,b) and (6.16), (6.31–31a).
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(v) Formulas for p∗−∞ and g.

In sub-sections (ii), (iii) and (iv) we have considered mainly solutions of S converging

to, or evaluated at, p∗∞ and the corresponding stable sets and representing functions f .

We now consider some of the corresponding formulas for p∗−∞ and g.

Starting with sub-section (ii), relevant results are obtained, loosely speaking, on

replacing ∞ by −∞, . by /, thus

p∗ = p∗∞ = (h∗∞, θ
∗
∞, α

∗
∞) with α∗∞ = 0, δα = α,

is replaced by

p∗ = p∗−∞ = (h∗−∞, θ
∗
−∞, α

∗
−∞) with α∗−∞ = ψ′0, δα = α− ψ′0,

also f , f̃ is replaced by g, g̃, as well as the replacements according to Type indicated

in Table 2, i.e. data in the first block of the Table are replaced by the second block and

data in the third block by the fourth. However, it will be useful to set out some of the

more important points explicitly.

In the definitions (6.30 a–c), M.
∞(V) is replaced by M/

−∞(V) and [0, ψ′0) by (0, ψ′0],

also [0] by [ψ′0], and the resulting expressions are denoted (6.30a–c)/.

The condition Φ0(Z; p♦) → p∗ in (6.29b), with p∗ = p∗−∞, can be replaced by

Φ♦(Z; p♦) → p∗−∞ when V = U+ × (0, ψ′0), and then it is seen that M/
+ is the in-

verse image under Ξ ofM/
+, the latter set being the graph of the function g, see (5.36a).

Thus

(6.31)/

M/
+(p∗−∞) = {p = (h, θ, α) : h = g(θ, A−1α), θ−(A−1α) .− θ <∞, 0 < α < ψ′0}.

Similarly M/
++ is the inverse image under Ξ of M/

++, see (5.37b), so

(6.31a)/

M/
++(p∗−∞) = {p = (h, θ, α) : h = g(θ, A−1α), θ−(A−1α) < θ <∞, 0 < α < ψ′0}.

Also Φ0(Z; π, ψ′0)→ p∗−∞ if ϕ0
−∞(Z; π)→ π∗−∞, so that

M/
0 = {p = (h, θ, ψ′0) : h > 0, θ ≥ 0, ϕ0

−∞(Z;h, θ)→ π∗−∞}(6.32)/

= {p = (h, θ, ψ′0) : h = g−∞(∞), θ−(−∞) .− θ <∞}

= {p = (h, θ, ψ′0) : h = g−∞(θ), θ ∈ dom g−∞},
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or (with some abuse of notation) M/
0 = 〈M/

−∞,ψ
′
0〉.

Combining the definitions of g(θ, Z) and g−∞(θ) we write

g̃(θ, α) = g(θ, A−1α) for 0 < α ≤ ψ′0(6.33)/

where A−1ψ′0 = −∞, g(θ, A−1ψ′0) = g−∞(θ),

dom g̃
.
= {(θ, α) : θ−(A−1α) ./ θ <∞, 0 < α ≤ ψ′0}.

Combining (31)/ and (32)/ yields

(6.34)/ M/
⊕ = M/

+ ∪M/
0 = {(h, θ, α) : h = g̃(θ, α) ∈ dom g̃}.

Turning to sub-section (iii), we note that all preceding calculations are based on the

forward motion for S. However, arguments involving convergence to p∗−∞ are more con-

veniently stated for the backward motion S←, which yields a closer symmetry with the

forward case. Briefly, for the backward flow and its linearisation, the matrix ∆ = [aij] is

replaced by ∆← = −∆, so that each eigenvalue λ shown in Table 2 changes sign. Thus,

with respect to the backward motion, there is for each Type at p∗−∞ a two-dimensional

stable manifold and a one-dimensional unstable manifold, with characterisations analo-

gous to those for manifolds at p∗∞.11

11Notation for the backward motion becomes complicated; the following conventions (which apply
only in the present sub-section) are set out for completeness. A superscript arrow (→ or←) distinguishes
concepts relating to the forward from those relating to the backward motion, but the forward arrow is
usually omitted when the meaning is clear.

Concepts for the forward motion of S are defined in 6(i). To define the backward motion briefly, set

v = −Z, S←(p) = dp/dv = −dp/dZ = −S→p,

Φ←0
v = Φ→0

−Zp for v ∈ I0(p), cf.(6.12),

so that, for a solution Φ0(p; Z) of S defined for all Z ∈ <, Φ←0(v; p) with v = −Z is the same solution
considered w.r.t. S←. Hence

Φ←0(v; p♦) = Φ0(−Z; p♦) = Φ♦(−Z + Z0; p♦, Z♦) = Φ←♦(v + Z♦; p♦, Z♦), cf.(6.14).

Recall that, if p∗ is a stationary point of S (say p∗∞ or p∗−∞), M.(S,V, p∗), abbreviated to M.(V) or
just M., denotes a stable set at p∗; similarly M/(S,V, p∗) denotes an unstable set at p∗, abbreviated
to M/(V) or just M/, (all w.r.t. the forward motion), cf.fn.7 above. Now stable sets at p∗ for the
forward motion are unstable sets at p∗ for the backward motion and vice versa, so M.(S←,V, p∗) =
M/(S→,V, p∗), or briefly M←. = M→/; similarly M/(S←,V, p∗) = M.(S→,V, p∗), or M←/ = M→..
See also Hirsch [1984] p.28.

In more detail, the argument of 6(iii) is adapted to the backward flow as follows. We assume that the
domain of S← is V← = U × (0, φ′0) with U = {θ ≥ 0}. Writing δ← = (h − h∗−∞, θ − θ∗−∞, α − α∗−∞),
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The argument for the backward flow corresponding to (6.35) – (6.50) is much the

same as in (iii), with tedious but routine substitution of notation — see fn.11. Here we

retain the notation for the forward motion, and skip to the main result:

(6.50)/ Proposition 14(β)(ii): Local Unstable Manifold for S at

p∗ = p∗−∞ = (h∗−∞, θ
∗
−∞, α

∗
−∞).

Let V = U+ × (0, ψ′0]. There exist

the linearisation L← of S← about p∗ = p∗−∞, cf.(6.35), is

dδ←/dv = ∆← · δ←, δ← ∈ V←,

where v = −Z, ∆← = [a←ij ] = −[aij ] = −∆ and ∆ is the matrix appearing in the second or the fourth
block of Table 2, depending on the Type of p∗−∞; now α∗−∞ = ψ′0 for both Types.

For each Type, the matrix ∆∗ has real, non-zero eigenvalues λ←i = −λi, i.e.

λ←+ = −λ+, λ←− = −λ−, λ←3 = −λ3 = −1,

so that the real canonical form is Λ← = diag(λ←+ , λ
←
− , λ

←
3 ), cf.(6.36). For the transformation matrices

we may choose the same matrices as in Table 3, say (T←i )−1 = T−1
i , i = 0, 1, with entries aij replaced

by −aij = a←ij and λi replaced by λ←i . Then (6.37 a–b) are replaced by

(T←)−1 ·∆← = Λ← · (T←)−1

(T←)−1δ← = δ̂← = (η←, ξ←, χ←), (T←)−1 = V̂←.

The system L← becomes — cf.(6.38) —

L̂← : dδ̂←/dv = Λ← · δ̂←, δ̂← ∈ V̂←, or
dη←/dv = λ←+ · η←, dξ←/dv = λ←− · ξ←, dχ←/dv = λ←3 · χ←.

The vectors of the form (η←, 0, 0) span the unstable subspace for L̂←, while the vectors (0, ξ←, χ←) span
the stable subspace. The system S← referred to the transformed co-ordinates (with origin δ̂∗← = 0) is
denoted Ŝ← and has the form

dδ←/dv = Λ← · δ̂← + Ĥ←(δ̂←)

and so forth, with χ̂← = α− α∗−∞, cf.(6.39).
Also, if N̂ is a neighbourhood of δ̂∗ (w.r.t. V̂←) in the new co-ordinates, then N = {p∗+T · δ̂←, δ̂← ∈

N̂} defines a neighbourhood of p∗ (w.r.t. V←) in the old co-ordinates. Let

M̂.(Ŝ←,N) .= {δ̂← ∈ N̂ : Φ̂←0(v, δ̂←)→ 0 as v →∞},

where Φ̂←0(v, δ̂←) is the flow on N̂ defined by Ŝ←, cf.(6.40a). Then

M.(S←,N) = {p = p∗ + T · δ̂←, δ̂← ∈ M̂.(Ŝ←,N)} = {p ∈ N : Φ←0(v, p)→ p∗−∞}.

As in (6.40c), M̂.(Ŝ←,N) is the stable manifold of Ŝ← at 0, restricted to N, and is the graph of a
C1 function η← = w←(ξ←, χ←). Hence M.(S←,N) is a (local) stable manifold at p∗−∞ for S← and is
a two-dimensional C1 submanifold of <3 (with boundary). Equivalently, M/(S,N) is a local unstable
manifold for S at p∗−∞, and is a two-dimensional C1 submanifold of <3 (with boundary).
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(1) a number γ ∈ (0, ψ′0) and a neighbourhood of (θ∗−∞, α
∗
−∞) in <2 of the form

N = N(γ) = {(θ, α) : (θ − θ∗−∞)2 + (α− α∗−∞)2 < γ2, θ &− 0, 0 < α ≤ ψ′0},

(2) a neighbourhood N = N(γ) (w.r.t. V) of p∗−∞ in <3,

(3) a function ĥ(θ, α], defined and C1 for (θ, α) ∈ N, satisfying h̃(θ∗−∞, α
∗
−∞) = h∗−∞,

with values h such that (h, θ, α) is in N and

M/(S,N) = {p = (h, θ, α) : h = h̃(θ, α), (θ, α) ∈ N}.

This set is a two-dimensional C1 submanifold of <3 (with boundary). Consequently

the setM/
+ — see (5.36b) — is a submanifold of <3 (with boundary if S−∞ is Type 0).

The functions ĥ and g̃ (and their derivatives) coincide on N, so that(6.51)/

g̃ is C1 on this set (allowing one-sided limits on the boundary) and

M/(S,N) = {p = (h, θ, α) : h = g̃(θ, α), (θ, α) ∈ N}

is a two-dimensional submanifold with boundary.

If we replace V, N, N by V++ = U++ × (0, ψ′0), N++(γ) = N(γ) ∩ {θ > 0, α < ψ′0},
N++ = N ∩V++, then for γ small enough,

g̃(θ, α) = g(θ, α) is defined and C1 on N++(γ),(6.52)/

with values h = g̃(θ, α) such that (h, θ, α) ∈ N++,

M/(S,N++) = {p = g̃(θ, α), θ, α) : (θ, α) ∈ N++(γ)},

and this set is a two-dimensional C1 submanifold of <3. Consequently the set M/
++ —

see (5.37b) — is also a two-dimensional C1 submanifold of <3.

The partial derivatives of g̃ evaluated at (θ∗−∞, ψ
′
0) are given, for Type 0, by

g̃∗θ = a12/(a22 − a11) = g′−∞(0) > 0, cf.[B] Table 1.(6.43)/

g̃∗α = a13/(a33 − a11).(6.44)/

g̃α(θ, A(Z)) · A′(Z) = gZ(θ, Z)→ 0 as Z → −∞,(6.45)/

the coefficients aij being chosen from the fourth block of Table 2.
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For Type 1, we have

ĝ∗θ = a12/λ+ = 2/σ2λ+ = −λ−/a21 = g′−∞(N) > 0, cf.[B] Table 1,(6.48)/

ĝ∗α = a13/(λ+ − λ3) = a13/(λ+ − 1)(6.49)/

with coefficients from the third block of Table 2.

Cor.14(i)(α) is replaced by

Corollary 14(i)(β). The unstable manifold of S at p∗−∞ (poor economy), i.e. the

stable manifold for the backward motion, may be approximated to first order ‘locally’

by an expression of the form

h = g̃(θ, α) = h∗−∞ + (θ − θ∗−∞)g̃∗θ + (α− α∗−∞)g̃∗α + o(θ − θ∗−∞, α− α∗−∞),(6.53)/

where h∗−∞ = h−−∞, θ∗−∞ = 0, α∗−∞ = ψ′0 for Type 0,

h∗−∞ = 1, θ∗−∞ = N, α∗−∞ = ψ′0 for Type 1,

and the partial derivatives of g̃ at (θ∗−∞, ψ
′
0) are given by (6.43–44)/ and (6.48–49)/

respectively.

There are also results analogous to Cor.14(ii)(α).

Turning to sub-section (iv), we have

Proposition 15(β)(Global Unstable Manifold).

(i) The function g̃ is C1 on its domain

{(θ, α) : θ−(A−1α) .− θ <∞, 0 < α ≤ ψ′0}

— see (6.31)/, (6.33)/.

(ii) The function g̃ is C1 on the interior of its domain, i.e. on

{(θ, α) : θ−(A−1α) < θ <∞, 0 < α < ψ′0}

— see (6.31a)/, (6.33)/.

Corollary 15(i)(β). M/
++ is a C1 submanifold of <3 and M/

⊕ is a C1 submanifold

with boundary.
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Corollary 15(ii)(β). The function h = g(θ, Z) is C1 on its domain

{(θ, Z) : θ−(Z) .− θ <∞, Z ∈ <}.

HenceM/
++ is a submanifold of <3 andM/

+ is a submanifold (with boundary if S−∞ is

Type 0); — see (5.37a,b) and (6.16), (6.31)/, (6.31a)/.
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Appendix to Section 6

This Appendix sets out calculations of the stable and unstable subspaces determined
by the matrices in Table 2 without making use of the transformation to real canonical
form; details aside, these subspaces are tangent at the origin to the corresponding stable
and unstable local manifolds of S − p∗. The calculations thus serve as a check on
the formulas stated in Section 6 for the local manifolds. For brevity we consider only
p∗ = p∗∞, of both Types, but similar calculations can be carried out for p∗−∞.

Consider the linearisation of S about p∗ as in (6.35), i.e. the system

δ′ = ∆ · δ, where ∆ = ∆S(p∗),(1)

δ = (δh, δθ, δα) = (h− h∗, θ − θ∗, α− α∗) = p− p∗ ∈ <3.

For brevity we write

y = h− h∗, x = θ − θ∗, u = α− α∗

and denote by aij the elements of the matrix ∆, distinguishing between p∗ of Types 1
and 0.

Thus for Type 1, L has the form

y′ = a11y + a12x+a13u(2)

x′ = a21y

u′ = a33u

where
y = h− 1, x = θ − n, u = α.

The aij and the eigenvalues of ∆ are those in the first block of Table 2.

We now write the eigenvalues as λ1, λ2, λ3 instead of λ+, λ−, λ3, and assume that
λ2 6= λ3.

For Type 0, L has the form

y′ = a11y+a12x+a13u(3)

x′ = a22x

u′ = a33u

where y = h − h∗∞, x = θ, u = α. The aij and eigenvalues are those in the third block
of Table 2, λ+ = λ1, λ− = λ2, and we assume that h+

∞ 6= r0 so that the eigenvalues are
distinct.

Now, for either Type, the system L has, for each λi, i = 1, 2, 3, linearly independent
solutions of the form

(4) yi = Pyi
eλiz, xi = Pxi

eλiz, ui = Pui
eλiz,
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the coefficients P being real constants in the present case because the λi are simple and
real. The solutions (4) may be found by inserting the expressions (4) into (1), (i.e. into
(2) or (3)) as trial solutions. A collection of three such linearly independent solutions
comprises a Fundamental System of solutions, and every solution of L may be written
as a sum of such solutions, see for example Kamke [1943] Section 13 or Kaplan [1958]
Chs.6-1 and 12-8. Thus the general solution of L is given by

y = APy1e
λ1z +BPy2e

λ2z + CPy3e
λ3z

x = APx1e
λ1z +BPx2e

λ2z + CPx3e
λ3z(5)

u = APu1e
λ1z +BPu2e

λ2z + CPu3e
λ3z

where A, B, C are arbitrary constants. Equations characterising the stable and unstable
subspaces of <3 may be obtained by considering separately the terms with negative and
those with positive eigenvalues, i.e. setting respectively A = 0 and B = C = 0.

Next, some calculations, starting with p∗∞ of Type 1. For the solutions (4), we have

y′i = λiyi, x′i = λixi, u′i = λiui,

so that on substituting into (2) the exponential terms cancel and there remains

λiyi = a11yi + a12xi+a13ui

λixi = a21yi

λiui = a33ui

Note that, from Table 2, a21 = n, a12 = 2/σ2, λ1 + λ2 = a11, λ1λ2 = −a12a21 = −2n/σ2,
also λ3 = r0 − 1 = a33.

Now the equations for λi = λ1 yield

λ1Py1 = a11Py1 + a12Px1+a13Pu1

λ1Px1 = a21Py1
λ1Pu1 = a33Pu1 ,

hence Px1 = (a21/λ1)Py1 , Pu1 = 0 because λ1 > 0 > λ3 = a33. This leaves

0 = Py1(a11 − λ1 + a12a21/λ1) or 0 = Py1(λ
2
1 − λ1a11 + λ1λ2),

and the bracket vanishes since a11 = λ1 + λ2, leaving Py1 undetermined.

Similarly, the equations for λi = λ2 yield

λ2Py2 = a11Py2 + a12Px2+a13Pu2

λ2Px2 = a21Py2
λ2Pu2 = a33Pu2 ,
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hence Px2 = (a21/λ2)Py2 , Pu2 = 0 because (by assumption) λ2 6= λ3 = a33, leaving

0 = Py2(a11 − λ2 + a12a21/λ2) or 0 = Py2(λ
2
2 − λ2a11 + λ1λ2),

and the bracket vanishes leaving Py2 undetermined.

Last, the equations for λi = λ3 yield

λ3Py3 = a11Py3 + a12Px3+a13Pu3

λ3Px3 = a21Py3
λ3Pu3 = a33Pu3 ,

hence Px3 = (a21/λ3)Py3 , so that

0 = Py3(a11 − λ3 + a12a21/λ3) + a13Pu3 , or 0 = Py3(λ
2
3 − a11λ3 + λ1λ2)− a13λ3Pu3 .

Note that Pu3 is not determined by the u-equation because λ3 = a33, however Pu3/Py3 is
determined by the y-equation.

Taking into account the relations among constants determined so far, the general
solution (5) becomes

y = APy1e
λ1z +BPy2e

λ2z + CPy3e
λ3z

x = APy1e
λ1z(a21/λ1) +BPy2e

λ2z(a21/λ2) + CPy3e
λ3z(a21/λ3)

u = CPu3e
λ3z = CPy3e

λ3z(λz3 − a11λ3 + λ1λ2)/a13λ3.

In order to characterise the stable subspace, we set A = 0 and substitute the remain-
ing expressions for x and u into the y-equation. This yields

y = (λ2/a21)x+ ua13(λ3 − λ2)/(λ
2
3 − a11λ3 + λ1λ2).

Taking into account that λ2/a21 = −a12/λ1, a11 = λ1+λ2, y = h−1, x = θ−n = θ−a21,
u = α− α∗∞ = α, λ1 = λ+, λ2 = λ1, this is found to agree with the expression

h = 1− (θ − n)a12/λ+ − α · a13/(λ+ − λ3)

obtained from (6.46d) on omitting the term o(θ − n, α) which distinguishes the local
stable manifold from the stable subspace.

To characterise the unstable subspace, set B = C = 0 and note that we may replace
APy1 by A since both constants are arbitrary. Thus y(z) = h(z) − 1 = Aeλ1z, so the
unstable subspace is just a line through the point (1, n, 0) parallel with the h-axis in <3.

Turning to p∗∞ of Type 0, we consider the system (3) instead of (2), with eigenvalues
λ+ = λ1 = a11, λ− = λ2 = a22, λ3 = a33. We now substitute solutions of the form (4)
into (3).
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For λi = λ1, this yields

λ1Py1 = a11Py1+a12Px1+a13Pu1

λ1Px1 = a22Px1

λ1Pu1 = a33Pu1 .

The third equation implies Pu1 = 0 since λ1 6= λ3 = a33, and the second equation implies
Px1 = 0 since λ1 6= λ2 = a22. Since λ1 = a11 this leaves Py1 undetermined.

For λi = λ2, we have

λ2Py2 = a11Py2+a12Px2+a13Pu2

λ2Px2 = a22Px2

λ2Pu2 = a33Pu2 .

Since, by assumption, λ2 6= λ3 = a33, we have Pu2 = 0. The second equation leaves Px2

undetermined since λ2 = a22 and, since a11 = λ1, the first equation reduces to

0 = Py2(λ1 − λ2) + a12Px2 .

For λi = λ3, we have

λ3Py3 = a11Py3+a12Px3+a13Pu3

λ3Px3 = a22Px3

λ3Pu3 = a33Pu3 .

Since λ3 = a33, the third equation leaves Pu3 undetermined. Since λ3 6= λ2 = a22, the
second equation implies Px3 = 0. The first equation then reduces to

0 = Py3(λ1 − λ3) + a13Pu3 .

Taking into account the relations determined above, the general solution (5) reduces
to

y = APy1e
λ1z +BPy2e

λ2z + CPy3e
λ3z

x = BPy2e
λ2z(λ2 − λ1)/a12

u = CPu3e
λ3z

For the stable subspace, set A = 0 and substitute into the y-equation. Using Ceλ3z =
u/Pu3 , this yields

y = x · a12/(λ2 − λ1) + u · a13/(λ3 − λ1)

which agrees with (6.41c) on dropping the term w(θ, α) and noting that y = h − h+
∞,

x = θ, u = α and λ1 = λ+ = a11, λ2 = λ− = a22, λ3 = a33.

For the unstable subspace, set B = C and replace APy1 by A since both constants are
arbitrary. This leaves y = Aeλ1z, so the unstable subspace is the y-axis in (y, x, u)-space,
or equivalently the h-axis in (h, θ, α)-space, in agreement with the geometric argument.
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7. Restatement of the Existence Theorem and a Perturbation Result.

We can now give a three-dimensional restatement of Theorem 4.

Let V = U × [0, ψ′0], where U = {θ ≥ 0}, be the domain of S. We say that a solution

Φ∗(Z) = (h∗(Z), θ∗(Z), α∗(Z)) defined for Z ∈ < is a saddle connection (from p∗−∞ to p∗∞)

if

(7.1) Φ∗(Z)→ p∗−∞ as Z → −∞ and Φ∗(Z)→ p∗∞ as Z →∞.

The trajectory corresponding to this solution — also called a saddle connection — is

denoted Φ̆∗. Then Theorem 4B may be restated as

Theorem 4C (Existence of a Saddle Connection).

In all cases consistent with the Standing Assumptions, the system S admits a unique

saddle connection Φ∗.

This statement calls for several comments.

(i) Our definition of saddle connection specifies a solution going from p∗−∞ to p∗∞ as Z

increases, not a solution going in the opposite direction.

(ii) Let M/ = M(S,V, p∗−∞) and M. = M(S,V, p∗∞) denote respectively the unstable

manifold at p∗−∞ (i.e. the stable manifold for the backward motion) and the stable

manifold at p∗∞. Depending on the choice of domain V, one or both of the saddle points

may be boundary points of V — see S.6 fns.5 and 7 — so that the associated manifolds

are properly manifolds with boundary.

(iii) An alternative statement of the Existence result is that for each Z♦ ∈ < there is

a unique point p∗♦ = (h∗♦, θ
∗
♦, α♦) = (π∗♦, α♦) such that Φ0(Z; p∗♦) → p∗−∞ as Z → −∞

and Φ0(Z; p∗♦) → p∗∞ as Z → ∞, i.e. that Φ∗(Z) = Φ0(Z; p∗♦), so that the solution of the

boundary value problem is also the solution of the initial value problem for p∗♦. Also,

(7.2)

Φ♦(Z; p∗♦) = Φ0(Z − A−1α♦; p∗♦)→ p∗−∞ as Z → −∞ and → p∗∞ as Z →∞, see (6.14),

so that the conditions

Φ♦(Z; p∗♦)→ p∗±∞ as Z → ±∞ and Φ0(ζ; p∗♦)→ p∗±∞ as ζ → ±∞
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are equivalent; and since Φ♦(Z; p∗♦) = 〈φ(Z; π∗♦, A
−1α♦), A(Z)〉 — see (6.15a) — this is

equivalent to φ(Z; π∗♦, Z♦) with Z♦ = A−1α♦ being the ‘star’ solution φ∗(Z) of S. This

again amounts to saying that, for each Z♦ ∈ <, there is a unique point π∗♦ = (h∗♦, θ
∗
♦)

such that

h∗♦ = f(θ∗♦, Z♦) = g(θ∗♦, Z♦) where(7.3)

φ(Z; f(θ∗♦, Z♦), θ∗♦, Z♦)→ π∗−∞ as Z → −∞ and → p∗∞ as Z →∞.

Yet again, using the definitions (6.33) and (6.33)/, this says that there is for each Z♦ a

unique point p∗♦ such that h∗♦ = f̃(θ∗♦, α♦) = g̃(θ∗♦, α♦) and Φ∗(Z) = Φ0(Z;h∗♦, θ
∗
♦, α♦).

(iv) Our saddle connection belongs, for large negative Z (large positive v = −Z), to

the local unstable manifold at p∗−∞ for S (the local stable manifold for S←), and for

large positive Z to the local stable manifold at p∗∞ for S, both of these manifolds being

two-dimensional. The complementary one-dimensional manifolds (respectively unstable

at p∗−∞ and stable at p∗∞), sometimes called separatrices, do not belong to the connec-

tion. This is different from the situation considered in some papers, e.g. Bonatti and

Dufraine [2003], DeBaggis [1952], where the connection is given by a path which is a

separatrix at each of two saddle points.

(v) In Part D we shall consider the response of the system S to perturbations of the

parameters of the underlying stochastic growth model, in particular the effect of such

perturbations on the saddle connection. This question is different from the usual formu-

lation of the problem of structural stability of a dynamical system — see for example

DeBaggis [1952], Smale [1960], Chillingworth [1976] — because we are not concerned

with the effects of replacing S by an arbitrary system which is ‘close’ according to some

reasonable criterion but rather with replacement by a system which corresponds to a

growth model which is close to the original one, and this question reduces essentially to

the effect of varying the parameters which characterise the growth model. Nevertheless

it is helpful to consider the question of the variation of the saddle connection in our

model in the wider setting of structural stability as considered by Gordon [1974]. It

turns out that in important cases one can obtain quite general results.

The following summary of some points of Gordon’s paper uses his terminology, which

follows Spivak [1965]; we refer to his paper for various technicalities. Gordon begins by

defining the concept of a k-dimensional manifold M in the Euclidian space En, (which

is what is usually called a submanifold). He then introduces the tangent space Mx of

M at a point x, which in the case mainly of concern here, namely n = 3, k = 2, may be
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identified with the usual tangent plane. Next, two manifolds of dimensions n1 and n2

are said to have normal intersection if

(i) M1 ∩M2 is not void

(ii) n1 + n2 − n = dim(M1x ∩M2x) for all x ∈M1 ∩M2.

Next, let ẋ = f(x) be a differential system, where f : En 7→ En, and ẋ = g(x), g : En 7→
En a perturbation of f . Assume that the system f has two distinct elementary critical

points P1 and P2, and let s1 be the set of all paths converging to P ∗1 as t → −∞, s2

the set of all paths converging to P ∗2 as t → ∞, and s be the set of all paths running

from P1 to P2 as t runs from −∞ to ∞. For present purposes we let P1 and P2 be

saddle points and suppose that s is just a single path. Then s is said to be persistent

under perturbation (Gordon Def.11) if for every ε > 0 there exists a δ such that, if

‖f−g‖C1 < δ, the system g has critical points P ∗1 and P ∗2 and a connecting path s∗, and

there exists a mapping ψ of En to En such that s∗ is mapped to s and ‖y − ψ(y)‖ ≤ ε

for any point y ∈ s. Clearly P ∗1 and P ∗2 will again be saddle points.1

According to Gordon’s Theorem 2, (taking into account the uniqueness of s), if

s is normal, i.e. if s1 and s2 have a normal intersection, then s is persistent under

perturbation. It is also shown (his Prop.4, Cor.2) that, if there are normal paths running

from P1 to P2, there cannot be normal paths running from P2 to P1.

For applications to our model we revert to our terminology and take n = 3, replace

x by p, t by Z, f by S with domain (say) V = {h > 0, θ ≥ 0, 0 ≤ α ≤ ψ′0} and set

P1 = p∗−∞, P2 = p∗∞ and M1 = M/ = M/(S,V, p∗−∞), M2 = M. = M.(S,V, p∗∞).

Strictly, M/ is defined as the set of starts of solutions stable at p∗−∞, but clearly this

corresponds to the set of trajectories (restricted to V) converging to p∗−∞, similarly M.

corresponds to the set of trajectories converging to p∗∞. So n1 = n2 = 2, n1 +n2−n = 1.

Also s corresponds to the ‘star’ trajectory Φ̆∗ = Φ̆∗(Z; Z ∈ <) = M/ ∩M., which by our

Theorem 4C is not void. Next, according to our Prop.15(α,β), M. is the graph of the

C1 function f̃ = f̃(θ, α) and M/ is the graph of the C1 function g̃ = g̃(h, θ). Thus at a

point p♦ ∈ Φ̆∗, the tangent plane to M. has the form

{(h, θ, α) : h− h♦ = (θ − θ♦)f̃♦θ + (α− α♦)f̃♦α}, cf.(6.31) and (6.33),

1Here ‖·‖c1 refers to distance for the c1-topology, see Gordon [1974] Def.10. Briefly, if f : En 7→ En

is C1, let ‖f‖ =
∑

i|fi| and ‖fJ‖ =
∑

ij |∂fi/∂xj | where |J | is the n × n Jacobian matrix at x ∈ En,
and set ‖f‖c1 = ‖f‖+ ‖fJ‖.
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while the tangent plane to M/ has the form

{(h, θ, α) : h− h♦ = (θ − θ♦)g̃♦θ + (α− α♦)g̃♦α}, cf.(6.31)/ and (6.33)/.

Consequently the intersection M.
p♦
∩M/

p♦
of the tangent plane s is given by

{(θ, α) : (θ − θ♦)(g̃♦θ − f̃♦θ) + (α− α♦)(g̃♦α − f̃♦α) = 0},

and since g̃♦θ > 0 > f̃♦θ this intersection is one-dimensional provided that g̃♦α 6= f̃♦α.

If this inequality holds for all points p♦ ∈ Φ̃∗, then Gordon’s conditions (i) and (ii) are

satisfied and the ‘star’ trajectory is persistent under perturbation .

In general, we do not have information about the sign of g̃α − f̃α. However, along

the saddle connection we have (dropping some affixes)

h(Z) ≡ f [θ(Z), α(Z)] ≡ g[θ(Z), α(Z)] for Z ∈ <, hence

[gθ(θ(Z))− fθ(θ(Z))]θ′(Z) + [gα(α(Z))− fα(α(Z))]α′(Z) = 0,(7.4)

with gθ − fθ > 0, α′(Z) < 0 for Z ∈ < and θ′(Z) = [h(Z)− 1]θ(Z) 6= 0

unless h(Z) = 1.

If b > 1, and both saddle points are Type 1, then n < N , p∗∞ = (1, n, 0),

p∗−∞ = (1, N, ψ′0) and in the (h, θ) plane the point (1, n) lies to the left of (1, N) see

[B] Figs.3(i,ii,iii), so that overall θ(Z) must decrease as Z increases. Also, phase analysis

shows that the ‘star’ path φ̆∗(Z) cannot leave(1, N) in the ‘wrong’ direction or approach

(1, n) in the ‘wrong’ direction, i.e. φ̆∗(Z) must start and finish in the halfspace {h < 1}
as Z increases from −∞ to ∞. Thus, if there are no excursions (loops) above the line

{h = 1}, then θ′(Z) < 0 for all Z. Contrariwise, at any upcrossing of {h = 1}, θ(Z) has

a local minimum with θ′ = (h− 1)θ = 0 and θ′′ = (h− 1)θ′ + θF = θF ≥ 0, which must

be followed by a downcrossing with θ(Z) at a local maximum with θ′ = 0 and θF ≤ 0.

A priori, there could be several successive such loops. Any conditions on F which imply

that an upcrossing of {h = 1} cannot be followed by a downcrossing, or perhaps a

condition which implies that h(Z) cannot have a maximum with h > 1, will suffice to

exclude such a ‘loopy’ configuration and so imply that h(Z) < 1, θ′(Z) < 0 for all Z

along the star path. We shall not investigate such conditions here, but simply consider

directly the assumption that, if b > 1, θ∗(Z) decreases for all Z ∈ < as Z increases. A

similar discussion applies if p∗∞ is Type 1 but p∗−∞ is Type 0. Alternatively, if b < 1, p∗−∞

lies to the left of p∗∞ in the (h, θ) plane, and in this case we consider the assumption that

4



θ∗(Z) increases for all Z ∈ < as Z increases. With either of these assumptions, (gθ−fθ)θ′

in (7.1) has definite sign so that (gα − fα)α′ must have the opposite sign, i.e. positive

if b > 1 so that gα − fα < 0, negative if b < 1 so that gα − fα > 0. In either case, the

possibility that g̃α = f̃α is excluded, and Gordon’s condition (ii) is satisfied with both

sides of the equation equal to 1 for all p ∈M. ∩M/. To sum up, we have

Proposition 16. If along the saddle connection Φ̆∗, there are no crossings of {h(Z) = 1}
at any Z ∈ <, then the connection is persistent under perturbation.

Remark. The case b = 1 is special. In this case n = N > 0, so the points π∗∞ and

π∗−∞ coincide at (say) π∗ = (1, n), and p∗∞ = (π∗, 0), p∗−∞ = (π∗, ψ′0). Now π∗ is not

a stationary point of S (unless the production function ψ is linear, which is excluded

here) so any connection Φ̆∗ must involve a ‘loop’ of φ̆∗, either leaving π∗ into {h < 1}
and passing into {h > 1} before returning to π∗ as Z ↑ (and α ↓), or leaving π∗ into

{h < 1} and returning via {h > 1}, (and a priori the possibility of successive loops also

exists). In any case, the condition for persistence is not satisfied, which is reasonable if

one considers perturbing the value of b.

Final Remark. It may be useful to review some of the main points of the argument

so far. Our approach to the search for a solution of a bilateral b.v.p. has been to replace

this problem by a pair of unilateral problems having common initial conditions. More

precisely, given a suitable Z♦, we have looked for an initial condition p.♦ = (h.♦, θ
.
♦, Z♦)

such that the ‘forward’ solution Φ(Z; p.♦) for Z ≥ Z♦ converges to p∗∞, also for p/♦ =

(h/♦, θ
/
♦, Z♦) such that the ‘backward’ solution Φ(Z; p/♦) for Z ≤ Z♦ converges to p∗−∞, and

further that these initial conditions may be chosen so as to coincide, say p.♦ = p/♦ = p∗♦,

so that the solution of the bilateral b.v.p. may be characterised as the solution Φ∗(Z) =

Φ(Z; p∗♦) of the initial value problem (i.v.p.) ‘through’ p∗♦. The choice of p.♦ is equivalent

to the choice of initial conditions such that (h♦, θ♦) ∈M.(Z♦) or h♦ = f(θ♦, Z♦), while

the choice of p/♦ is equivalent to (h♦, θ♦) ∈ M/(Z♦) or h♦ = g(θ♦, Z♦). The problem is

delicate because the manifolds M. and M/ (or equivalentlyM. andM/) are ‘thin’, i.e.

the long-term behaviour of solutions starting in these manifolds is sensitive to initial

conditions, see [B] Cor.11 and Remark (2) for details. The possibility of determining

a point (h∗♦, θ
∗
♦) ∈ M.(Z♦) ∩ M/(Z♦) depends on the location of these manifolds (or

equivalently of the graphs of the functions h = f(θ, Z♦) and h = g(θ, Z♦)) in the plane,

and in particular on the fact that f(·, Z♦) is a decreasing and g(·, Z♦) an increasing

function.
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While the representation of the solution of a bilateral b.v.p. as the ‘common’ solution

of two i.v.p.s, one forward and one backward, is useful for the existence proof, the

appropriate co-ordinates (h∗♦, θ
∗
♦) for given Z♦ cannot in general be determined without

first solving the b.v.p. by other means, e.g. by numerical simulation.

Nevertheless, approximations to the solution of the b.v.p., and hence to the optimal

log-consumption function, can be given for large |Z|, i.e. for situations where the economy

is either very rich or very poor. Obviously, given the ‘Type’ of the b.v.p., the co-ordinates

of π∗∞ and π∗−∞ are known, and (h∗(Z), θ∗(Z)) must be close to (h∗∞, θ
∗
∞) for large Z > 0,

similarly (h∗(Z), θ∗(Z)) must be close to (h∗−∞, θ
∗
−∞) for large Z < 0 (i.e. k̄ close to 0).

The imbedding of S∞ and S−∞ in S allows the approximations to be expressed simply

by a Taylor expansion to first order, see (6.53) and (6.53)/. Explicitly, setting α = A(Z)

and α∗∞ = 0, (6.53) yields an approximation to h = f(θ, Z) for large Z > 0; similarly

setting α = A(Z) and α∗−∞ = ψ′0 yields an approximation to h = g(θ, Z) for large Z < 0.

Incidentally, these results may be useful for numerical calculation of the optimum, since

they allow a bilateral b.v.p. with boundary values at ±∞ to be replaced by a sequence

of b.v.p.s on finite intervals.
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