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Abstract

The optimal capital growth strategy or Kelly strategy, has many desirable prop-
erties such as maximizing the asympotic long run growth of capital. However, it has
considerable short run risk since the utility is logarithmic, with essentially zero Arrow-
Pratt risk aversion. Most investors favor a smooth wealth path with high growth. In
this paper we provide a method to obtain the maximum growth while staying above
a predetermined ex-ante discrete time smooth wealth path with high probability, with
shortfalls below the path penalized with a convex function of the shortfall so as to force
the investor to remain above the wealth path. This results in a lower investment frac-
tion than the Kelly strategy with less risk, and lower but maximal growth rate under
the assumptions.

A mixture model with Markov transitions between several normally distributed
market regimes is used for the dynamics of asset prices. The investment model allows
the determination of the optimal constrained growth wagers at discrete points in time

in an attempt to stay above the ex-ante path.
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1 Introduction

In this paper we provide a method to deal with the risky short run properties of the expected
log capital growth criterion . That theory provides the maximum long run asympotic growth,
as shown in increasing generality by Kelly (1956), Breiman (1961), Algeot and Cover (1988)
and Thorp (2006); see also the book MacLean, Thorp and Ziemba (2010), which discusses
the Kelly strategy and reprints the major papers on the topic. However, the Arrow-Pratt
risk aversion index for the logarithmitic utility function is %, which is essentially zero. Con-
sequently, the wealth trajectories for the Kelly investor are very volatile and risky. One way
to deal with the risk is to use fractional Kelly strategies which blend the Kelly portfolio with
cash; see MacLean, Blazenko and Ziemba (1992). But this is ad hoc and does not generally
produce a smooth wealth path. It reduces risk and growth, so the wealth trajectory has the
same dynamics but with a smaller scale. To get a smooth trajectory the fraction in the Kelly
may need to be very low and correspondingly the growth rate is small. Applications that
use the fractional approach are Grauer and Hakansson (1986, 1987), Hausch, Ziemba and
Rubinstein (1981), and Mulvey and Valdmirou (1992); see also the survey of applications in
Ziemba (2013).

Our approach is to specify a desired ex-ante wealth path at discrete decision points in
time, and to maximize the growth rate (objective) while staying above the path (constraint).
This cannot be achieved with certainty, so a condition to exceed the desired path with high
probability is imposed and path violations/shortfalls are penalized in the objective. The
penalty is a convex function of the shortfall, so that, for example, doubling the shortfall
incurs a more than doubled negative penalty. The decision model has strong theoretical
underpinnings linked to Prospect Theory (Tversky and Kahneman, 1993) and is analytically
attractive as a stochastic dynamic optimization program.

In Section 2 the financial market is presented. The setting is a Markov regime switching
framework, with geometric Brownian motion prices within regime. The resulting log prices

are a mixture of normals and provide the flexibility needed to obtain accurate price predic-



tions as inputs to investment decisions. The investment model is developed in Section 3,
where the objective is to maximize growth penalized for shortfalls, subject to a dynamic VaR
constraint requiring wealth to exceed a specified benchmark path with high probability. The
unconstrained Kelly strategy is analyzed in Section 4, where the shortfall rate and shortfall
size relative to a benchmark are developed. The results provide context for the penalized
shortfall approach which is dealt with in Section 5. Section 6 concludes with observations

and implications.

2 Market Structure

The wealth accumulation process is a stochastic dynamic system which depends on the
allocation of capital to investment opportunities and the changing prices of those assets. A
standard model for price dynamics is geometric Brownian motion or a geometric random walk
in discrete time. It is known that this model fails to capture important characteristics of asset
prices, notably price distributions which are not log-normal and time dependent volatility. A
flexible framework which accomodates observed price behavior is a Markov regime switching
model, where the dynamics within a regime follow the standard geometric random walk and
the parameters in the dynamics vary by regime. Hamilton (1989) successfully applied the
Markov model to US GDP data and charcterized the changing pattern of the US economy.
Ang and Bekaert (2002) used regime shifts in a study of international asset allocation.
Guidolin and Timmermann (2006) provided important insights into how investments vary
across market regimes. The regimes make economic sense, and the regime switching market

structure is very amenable to analysis.

2.1 Switching Regime Model

Consider a competitive financial market with n assets whose prices are stochastic dynamic

processes, and a single asset whose price is non-stochastic. Let the vector of prices at time



t be

P(t) = (Polt), Pi(t), s Pa(t)), (1)

where Py(t) is the price of the risk free asset, with rate of return r, at time t. It is assumed that
the financial market is separated into m distinct regimes. Suppose the market is in regime
k at time ¢, and let Yi; (t) = ¢nPy (t) ,i = 0, ...,n be the log-prices in regime k, k = 1,...,m.

The price dynamics within regime k are defined by the stochastic differential equations

dYor (t) = rdt (2)
dYk (t) :Oékdt—i-Adek,k: 1,...,m, (3)
Yik(t) 1k dZy,
with Yk(t) = , O = ,Ak = (62]]6) ,de = s where dZ,k,Z =

1,...,n are independent Brownian motions.

In this framework the risky asset prices within a regime are assumed to have a joint
log-normal distribution.

The regimes over time {S(t),t > 0} follow a discrete state continuous time Markov pro-
cess. The state space is finite S = {5,...,5,,} and states will be referred to as regimes:
{i=1,...,m}. The dynamics of the Markov process are driven by the intensity g,;, which is

the rate of transitioning from regime ¢ to regime j. The rate of switching from regime ¢ at

o(h)

time ¢ to regime j at time ¢ + h is P[S(t + h) = j|S(t) = i] = gij - h + o(h), where Z= — 0

as h — 0. If the process is in regime ¢ it transitions out of ¢ to another regime with rate
gi = Z;”:l gij- Then p;; = % is the probability that the process moves to regime j from
regime 4. For regimes 4, j the transition probability function P;;(t) = Pr[S(t) = j]X(0) =i

is a continuous function of t. This function satisfies the Chapman-Kolmogorov equations



Pij(t+5) = > pes Pin(t)Pij(s)-

The market structure given by the switching factor model has advantages: (i) the abil-
ity to estimate the parameters in the model from observations on the asset returns and
(ii) the ability to define analytically tractable investment models. The standard estima-
tion procedure is the Expectation Maximization (EM) algorithm (Dempster et al, 1977).
The investment model developed in subsequent sections considers that parameter values are
known /estimated and focuses on investment strategies which control risk. The aspect of
risk which is attributable to estimation error is not considered, but the positive results in
the literature with the Markov switching model and the EM algorithm are the basis for the

defined market structure.

2.2 Wealth Equations

The prices on assets vary continuously. The decision model assumes that time is divided
into equal size planning intervals. A decision on the fractions of investment capital allocated
to assets is made at the beginning of a period and those fractions are fixed for the period,
although continuous rebalancing of allocated capital is required to maintain the fixed frac-
tions. At the begining of the next period the decision fractions are updated. In the analysis

of trading strategies, the following assumtions are made:

1. All assets have limited liability.
2. There are no transactions costs, taxes, or problems with indivisibility of assets.
3. Capital can be borrowed or lent at the risk free interest rate at any level.

4. Short sales of all assets is allowed.

Consider that the decision points are t; = 0,ty = t;+d,....,t,.1 =t +d =T. An investment

strategy is the vector process

{(zo (t), X (), 1 =1,... L} = {(z0 (1) 21 (1) s coortn (1)), L = 1, ..., L} (4)



where Xn: x; (t;) = 1 for any t;, with z (¢;) the investment fraction in the risk-free asset and
x;(t) tfg fraction invested in risky asset 7,7 =1, ..., n.

The change in wealth from an investment decision X (t) is determined by the changes in
prices, which depend on the Markov regime switching process and the dynamics of prices

within a regime. Let X2 = ¥/ % and ¢ = oy, + %E%e, k=1,...,m. Then the instantaneous

change in wealth if the market is in regime k is
AWy, (t) = [ X" (¢) (¢ — 7€) + r]Wi (t) dt + Wi(t)[ X' () ZrdZji). (5)

If the wealth at time ¢ is w; and the investment decision is maintained through rebalancing

as a fixed fraction from time ¢ to time ¢ + A, then the accumulated wealth is

Wit + h) = w, - exp {[X/(t)(¢k —re)+r— %X’(t)ZiX(t)]h + héX(t)’Zka} , (6)

where Z]/g = (Zlka ceey an), sz ~ N (0, 1) .

The following assumptions are made for wealth dynamics between decision points:

1. There is at most one regime transition in the time interval (t,t + d). Given regime i at
time ¢, then 7; = the time to switch from regime ¢ to another regime is Exponential with
parameter ¢;, and Pr[r; < d] = e %% ~ ¢;d, which is small for a short time interval.

For two transitions Pr[r; + 7; < d] &~ ¢;q;d*, a negligible quantity.

2. If there is a transition it occurs at the start of the interval (t,t + d). The proba-
bility that there is one transition in the interval and it is from ¢ to j is Py;(d) =
PriS(t+d)=j|S(t) =1 = Pr[S(d) =j5(0) =] =~ ¢d x p;j. Then the chance of
remaining in regime i is P;(d) ~ 1 — ¢;d. Suppose the transition from i to j oc-
curred at time h, h < d. Then accumulated wealth on the interval with the fixed frac-

tion strategy X (¢) is w; -exp {[X'(t)(¢i —re)+r — 1 X'()LIX (t)]h + h%X(t)’EiZi} X



exp {[X’(t)(gbj —re)+r— 3 X' ()X (t)](d—h)+ (d— h)%X(t)’Eij} . The expected
rate of growth is In(w,) + E {[X'(t)(¢; — re) +r — 3 X' (1)S2X (t)]d} + D(h), where
D(h) = E{[X"(t)(¢; — ¢;) — 3X'(t)[X? — ] X(¢)]h} . Although there is a slight chance
of switching to markedly different regimes, the more likely scenario is a switch to
an adjacent/close regime. Also 7;, the time in regime 7, is Exponential with density
ki(h) = gie~%" and smaller values are more likely. So the value of D(h) is small and
the rate of return in the next time interval assuming there is a regime switch to j is
close to In(w;) + E {[X'(t)(¢; —re) +r — 3X'(t)L3X(t)]d} , the rate from regime j

over the interval.

3. The investment strategy is a fixed fraction of wealth throughout the interval, with

continuous rebalancing to maintain the fractions.

The implication of these assumptions is that a decision on investment fractions for the
next interval are based on the current position and the probability that one of the regimes:
1,7 =1,...,m will prevail for the entire interval.

Consider that the wealth at the beginning of period t is w;_1, the regime is k in period
t, and the period length is subsumed into the parameters. That is, if the period is one day,
the parameter ék = ¢d is the vector of expected daily returns , S = Yd> is the covariance
matrix for daily returns and 7 = rd is the one day risk free return. Then the conditional

wealth at the end of period t if the regime is k, given the fixed investment strategy X (t), is

Wi(t) = we_y - exp {[X’(t)(gzbk —7e) +7 — %X’(t)iiX(t)] - X(t)’ikzk} : (7)

Let

Re(X (1)) = exp {[X’(t)(&k —7e) + 7 — %X’(t)f]iX(t)] - X(t)’f]k.Zk} (8)

be the return on investment X (¢) in assets in period ¢. The rate of return in regime % is



In(Rp(X (1)) = | X' (t)(¢p — 7€) + 7 — %X’(t)f)iX(t) + X' ()21 Zy. (9)

Let fp(v|t),k = 1,...,m be the normal density of In(R;(X(¢)), the log-return given the
regime is k. Then E(In(Ri(X(t))) = m(t) and o(in(Ri(X(t))) = ox(t), where p(t) =
X'(t)(¢p — re) +r — Lof(t) and of(t) = X'(t)A7X(t). For the transition probability
function P;;(d) the interval time d is fixed, so we will drop the time d and simply re-
fer to the fixed matrix P = (P,;). Assume that the distribution over regimes is w(t) =
(m1(t), ..., T (t)), where w(t) = m(t — 1) P. Let the unconditional rate of return on investment
X(t) be In(R(X(t))). Then the unconditional distribution for In (R(X(¢))) is a mixture of
normals f(v|t) = mi(¢) fr(v]t) + ... + T (t) frn(v]2).

Based on investment decisions at discrete points in time t = 1,..., 7T, the wealth process
and the rate of return process are analyzed as discrete time stochastic processes. For the
stochastic process R(X(t)) a trajectory of the data process is associated with an outcome
w in the space Q of all returns trajectories at times ¢t = 1,...,T. The distributions over
returns at each time ¢ generate a probability measure P on {2 and the associated probability
space (€2, B, P). The sample space can be represented as 2 = Q; x -+ x Qp, with w, €
the data at time ¢ and Q' the data up to and including time ¢. Subsets of Q are of the
form A = A; x ... x Ap. Let R(w, X(t)),w € Q, be a returns trajectory, where X(t) is
an investment strategy which can depend on the data history but not on unknown future

returns. The discrete time wealth trajectory is W(w,t) = W(w,t — 1)R(w, X (t)).

3 Investment Model

Wealth is generated through investment in the risky assets, but the trajectory of wealth can
have large swings and the chance of falling below sustainable levels needs to be controlled.
The characteristics of shortfalls (falling below benchmarks) are the rate/chance and the

size. Both components are incorporated into our investment model, where shortfall rate is



constrained at a specified level, and the shortfall size is penalized in the objective. The
criterion in the objective is capital growth, namely the maximization of the expected value

of logarithmic utility of penalized wealth, subject to the constraints.

3.1 Penalized Shortfall

We are concerned with trajectories which fall below a target path at discrete points in time.
Consider a trajectory of the wealth process W(t),t = 1,...,T, and the target/benchmark
wealth path w*(t),t = 1,...,T. Two approaches to target paths are : (i) a growth path based
on a desired growth rate, possibly at the risk free rate; (ii) a decay path based on a fallback
rate. The targets are general and can vary from growth to decay over time.

If the trajectory is below the target at time ¢, W (¢) < w*(t), then there is a penalty in the

form of a wealth discount, W (¢)[1—p;], pr < 1. Since the intention is to control large shortfalls,

w* (t)—W (t) _ shortfall. If

is is natural to make the penalty proportional to the shortfall, p, = 0 target

gl
W(t) > w*(t), p, = 0. Then discounted wealth is W () [1 —(1- XJZ((?))JF} , where the penalty
parameter v captures the decision makers aversion to losses and the positive part is defined
by [y]" =y if y > 0and [y]" = 0if y < 0. This discounting approach works well with a

logarithmic transformation since when W (t) < w*(t)

W(t)
w*(t)

In (W(t) {1 (- )+]7) = In(W(t)) — 7 [In(w"t) — In(WE)]".  (10)

If W (t) < w*(t), the path shortfall is [w*(t) — W (t)] and the penalty v [In(w*(t)) — In(W(t))]"
is conver in the shortfall. The penalty parameter v > 1 is a power factor.
There is another rationale for the penalty approach. Consider D(t) = UV)V((?) Then

In(W(t)) = In(w*(t)) + in(D(t)) = [0.5In(w*(t)) + In(D*(t))] + [0.5In(w*(t)) + In(D~(t))].
where Dt (t) = D(t) if W(t) > w*(t) and D(t) = 1 if W(t) < w*(t), D~ (t) = D(t) if

W(t) < w*(t) and D~ (t) = 1 if W(t) > w*(t). Then (9) can be written as



{0.5[11(10*(13)) +In(1 + W

+ [0.5ln(w*(t)) ~In((1 - )(1+v))} , (11)

By separating the wealth into gains [W(t) —w*(t)]Tand losses [w*(t) — W (t)]" relative to
the benchmark w*(¢), it is seen that the convex penalty approach in (11) defines an objective
which is concave in gains and convex in losses. So the convex penalty approach is consistent
with one of the main principles of Prospect Theory (Kahneman and Tversky, 1993).

The use of the logarithmic transformation puts the focus on the growth rate of capital.
That is, In(W(t)) = In(W(t — 1)) + In(R(t)), where In(R(t)) is the rate of return in period
t. In our model, the investor’s objective is to achieve capital growth with security, so that
the chance and size of shortfalls in wealth is small. This paper extends MacLean, Sangre,
Zhao and Ziemba (2004), which constrained the chance of shortfall in a VaR model. The
objective in that work was optimal growth, which was formulated as the maximization of
the logarithm of terminal wealth, and it decomposed into the period by period growth rates.
If wealth is discounted with a convex penalty in the objective as proposed, the same period
by period decomposition applies.

To develop the wealth process and path shortfall, consider the return process R(X (t)),t =
1,...,T. For the stochastic process R(X(t)) a trajectory of the data process is associated
with an outcome w in the space 2 of all returns trajectories, with probability space (2, B, P).
Let R(w, X (t)),w € ©, be a returns trajectory, where X (¢) is an investment strategy which
can depend on the data history but not on unknown future returns. The wealth trajectory
is W(w,t) = W(w,t—1)R(w, X(t)). A requirement that the wealth trajectory lies above the
path is W(w,t) > w*(t),t = 1,...,T. For a set of trajectories A € B, it could be required

that all trajectories in the set satisfy the path condition: W(w,t) > w*(t),t =1,...,T,w € A.

10



In log space the corresponding path condition is In(W(w,t)) > In(w*(t)),t =1,...,T,w € A.
If the path constraint is not satisfied, the model imposes a penalty at the period of violation.

That is, the logarithm of discounted wealth at the horizon is In(w(ty)) + Y, In(R(X (t)) —

Y Cimalin(w (1) — (W (D).

3.2 Capital Growth with Security

For the path condition to be satisfied (1—a)100% of the time, the multiperiod capital growth
problem, where the rate of shortfalls is controlled with a VaR constraint and the size is part

of the objective, is written as

max {E

where

t=1

D I(RX(8) = Y [In(w(t) — In(W(t - 1)) - ln(R(X(t))]+] } (12)

Pr(in(R(X(t)) > In(w*(t)) = In(W({t—1)),t=1,...,T]| > 1 -« (13)

For a decision X, the path condition is satisfied for a set of scenarios A € B. If the

measure of A is such that P(A) > 1 — «, then the set is termed acceptable and the decision

an acceptance set A = A; x ... x Ap, P(A) > 1 — a, with complement sets A;, a restricted

form of the problem is

max {E Z {in(R(X(t)) — vz, [In(w*(t)) — In(W(t — 1)) — ln(R(X(t)))]}} (14)

11



where

In(R(w, X(t)) > In(w*(t)) —in(W(w,t —1)),t=1,..., T,we A (15)

Let U(X*(A)) be the optimal solution for this problem. Then sup{acp,pa)>1-a} ¥ (X*(A)) =
U(X*(A*)) is a solution to the full problem defined by (12),(13). It is assumed that there
is an optimal solution to the full problem and therefore there is an optimal acceptance set.
That is, given the optimal acceptance set the solutions for the alternative formulations are
the same. The log transformation decomposes the final discounted wealth into a period by
period summmation. The formulation with acceptance sets provides a setting for decompos-

ing the multi-period constrained growth problem into a sequence of one period problems.

PROPOSITION 1

Conditional on the optimal acceptance set, the optimal strategy in period t is path inde-
pendent, depending on the wealth at the beginning of period t but not the path to that wealth.
The problem is a sequence of static one period problems conditioned on the wealth from the

previous period.

Proof:

Let A* be the optimal acceptance set and consider the associated problem

mazx {E > {In(RX (@) — v lin(w* (1)) = In(W(t = 1)) - ln(R(X(t)))]}}

Subject to

12



In(R(w, X (t)) > In(w*(t)) — In(W(w,t —1)),t=1,...,T,w e A"

The Lagrangian for this problem is L(X, \*, A*) =

EY [{in(ROX(0) = I (' (1) = in(W (¢ — 1)) — n(ROX@))] }] +

t=1

T

E Z Ta: N (w) (In(w™(t)) — In(W(t — 1)) — In(R(X(t)))) . (16)

=1
The multiplier Aj(w) > 0 is in the space of the Lesbegue integrable functions on € and

is such that mazx {L(X, \*, A*)} is equivalent to the above problem. With L;(X, \*, A*) =

Elin(R(X (1)) — iz [In(w*(t) = In(W(t = 1) = In(R(X(1))]]

+ E L A(w) (In(w*(t)) = In(W(t = 1) — In(R(w, X(1)))], (17)

then L(X,\*, A*) = Zthl {L(X,\*;A*)}. Tt can be seen that the Lagrangian is a
sequence of T' expressions, each conditioned on the wealth outcome from the previous time
period. That is, the decision X (1) given the initial wealth w(0) leads to wealth W (1) = w(1),
which is the wealth at the start of period ¢t = 2. In the #*" period the Lagrangian maximization

is equivalent to the one period problem

Mazxm {E[In(R(X (1)) — yIz-[In(w(t)) — In(w(t — 1)) = in(R(XO)]]}  (18)

13



Subject to

In(R(X () > (In(w*(t))) — In(w(t — 1)),w € A* (19)

That is, the dynamic multiperiod problem is a sequence of static one period problems

conditional on the wealth from the previous period. [

The sequence of one period problems is defined for the optimal acceptance set A*. Finding
the optimal acceptance set is a difficult problem. There is a sequence of one period problems
with a probability constraint which is equivalent to the optimal acceptance set sequence. So
the probabilistic constraint contains the optimization over acceptance sets.

For the wealth process In(W(t)) = In(W(t — 1)) + In(R(X(t)), the constraint
Pr{in(W(t—1)) +In(R(X(t)) > In(w*(t))),t=1,....T| > 1 -«
is the same as

1—Pr[Vvi, (In(W(t—1))+ In(R(X(t)) < In(w*(t)))] > 1 - a.

With Pr[In(R(X (t)) < In(w*(t) — In(w(t — 1)] < oy, where 3._ oy < @, the one period

problem with a probabilistic constraint is

Max {E [ln(R(X(t)) —[In(w*(t)) — In(w(t — 1)) — ln(R(X(t))]*]} (20)

subject to

14



Pr{in(R(X(t)) > In(w*(t) — In(w(t —1)] > 1 —ay (21)

XT(t)e = 1.

The requirement Z;‘ll oy < « is still part of the problem specification. The choice
of « is replaced by a sequence {ay,t =1,...,T}. The a; may be determined sequentially
as the actual wealth trajectory {w(t),t =1,...,T} unfolds relative to the benchmark path
{w*(t),t =1,...,T} . If a priori the periods are the same, the one period constraint proba-
bilities would be oy = %a. This is analogous to the Bonferroni method for determining an

overall (path) rate a and period specific rates oy.

3.3 Functional Form of One Period Problem

The multiperiod capital growth problem is structured as a linked sequence of one period
problems, but the probabilistic constraints in the one period problem could pose a problem
for solution. However, the setup for rates of return as normal within regimes and a mixture
of normals overall makes the problem more tractable.

Assume that the distribution over regimes in period t is (m(t),...,m,(f)) and let the
unconditional return be R(X(¢)). The conditional rate of return given regime k in period ¢

is multivariate normal with
/ 7 ~ 1 / A / A
In(RL(X(1))) = | X' (t)(¢r, — Te) +1 — R OATX ()| + X () A Zy.

If In(Rk(X (t))) < In(w*(t)) — In(w(t — 1)), then [In(w*(t) —In(w(t — 1) — In( Rk (X (t))]"
has the same probability law as as In(Rg(X (t)), which is Gaussian. Let fy(v[t),k =1,....,m
be the normal density of In(Ry(X(t)), the log-return given the regime is k. The unconditional

distribution for log-returns is a mixture of normals f(v|t) = w1 () f1(v[t) +. . .+ 70 (L) fin (V]1).

15



The chance constraint in the one period problem given w(¢t — 1), in terms of log-return, is

Pr(in(R(X(t)) > In(w*(t)) — In(w(t —1))] > 1 — a,

or

In(w*(t))—In(w(t—1))
/ L) FL(0]) + - + T () (0])] 0 < (22)

—00

Of course fiiw*(t)_ln(w(t_l)) fr(|t)dv = ff’zix(t)) f*(2)dz, where f*is the standard normal
and 24(X (1)) = [l O with (1) = X(8)(dy —e) +7 — 557 () and 63(t) =
X' (H)A2X(t).

Let G(X(t)) = > e, mi(?) ff’ziX(t)) f*(2)dz — ay. So the deterministic constraint is

G(X(t) < 0. (23)

The objective can be similarly reformulated. The expected rate of return is

m ZR (X (1))
om) [ nGw(0) = InCwlt— 1) = BB (X (@) +2- (iR X)) ()=

(24)
Then the one period problem is P(g(t),~, o) :

maz {F(X(1)|G(X(1)) <0, X (t)e =1} .
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This problem depends on the gap between starting wealth and the path target, g(t) =
In(w*(t)) — In(w(t — 1), as well as the penalty v and the shortfall probability a;. The multi-
period problem is a sequence of such one period problems, where the gap in the next period

is controlled by the settings (v, ;) and the investment decisions for the period.

4 The Kelly Strategies

If the objective is to optimize capital growth, the problem is Max {ln(wo) +30, E(ln(R(X(t)))} :
The expectation is over the randomness in prices and the uncertain regimes. The terminal
wealth problem is a sequence of one period problems. In each period the optimal capital
growth strategy, called the Kelly Strategy, maximizes the unconditional growth rate of capi-
tal > 7", mip(t) - E(In(Ry(X (t))). This strategy has many attractive properties and has been
dubbed Fortunes Formula (MacLean, Thorp and Ziemba (2010a), MacLean, Thorp, Zhao
and Ziemba (2011)). One downside of the Kelly strategy is the chance of large losses. A
prime motivation for the path constraint and shortfall penalty is to control large losses. In

this section, the Kelly strategy and modifications are considered.

4.1 Kelly Strategy with Regimes

Consider the one period problem max ) " mp(t) - E(In(Rp(X(t))) = maxy -, m(t) -

[fe(t) — 562(t)] . Dropping the time argument the solution is

X* = (Zﬂ-kAz) <Z7Tk<g2~5k—f€)) s

where X* = : are the fractions invested in the n risky assets.

*

Tp

Since the distribution over regimes (7, ...,7x) in period ¢ will depend on the regime
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distribution in period ¢ — 1 and the transition probabilities, the Kelly strategy will be prior
regime dependent. It is noteworthy that the Kelly strategy does not depend on the wealth
at the beginning of the period: w(t — 1). However, the performance of the Kelly strategy
relative to the path does depend on the starting wealth. In the risk context, performance is
defined by the shortfall rate and the average shortfall size.

Given starting wealth w(t — 1) and the position relative to the target path g(t) =
In(w*(t)) — In(w(t — 1), the chance of a shortfall in period t is P[in(R(X™)) < g(t)] = af.

Using the mixture of normals distribution,

g(t) K
o = [ 1Y mdie)d (25)

T k=1
where f,(v) is the normal density with mean pf = Ein(R,(X*)) = X*¥ (qgk - fe) +7—
IX*A2X* and variance o} = o?(In(Ry(X*)) = X A2 X*.

The average size of a shortfall with the Kelly strategy, is

—

where Vi, = In(Ry(X™*). The bi-criteria (a;,n;) can be combined into the risk score

x % *
Y = Qp X1,

describing the risk relative to the path benchmark w*(t) and starting wealth w(¢ — 1).
The formulas for the rate and size of shortfalls can be calculated to determine the risk
with the Kelly strategy. Obviously that risk will depend on the characteristics of the finan-

cial market © = (7(0), P, 6y,...,60,,), and the investors financial position g(t).

CASE : SINGLE RISKY ASSET

To simplify the analysis of shortfall rate and shortfall size with the Kelly strategy, consider
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the case of a single risky asset (the market index) and two regimes representing UP and
DOWN markets. It is assumed the probabilities for UP/DOW N in the coming period are
(71, m2). So the model parameters are © = (él,gf,m,qgg,g%,m). If ¢ = mdy + Tags, and

5 = 7T15~f + ngg, the Kelly strategy invests z* = ‘55_27" in the risky asset.

From (25) and (26) the shortfall rate and average shortfall size are respectively,

ay = mP(2]) + mP(z3) (27)

i =9(t) — ait {m [17@(27) = o7 (2])] + m2 [132(23) — 039" (23)]} (28)

where ® is the standard normal cumulative distribution and

g(t) = [#*(& = ) + 7 — 1775?]

33*(51

21:

The expressions for «; and 7; are defined by the wealth relative to the benchmark as
given by g as well as the standard normal distribution ®, the mean pj and standard de-
viation o} of the return on the Kelly investment strategy in each regime, and the regime
probabilities (71, 7m) . The Kelly strategy and investment returns depend on the price pa-
rameters (g?)l,gl,(;)g,gg). Let 7 = 0,01 = ¢, g = (1-— c)qbl,gl =0y =0,m=1—mm=n.
The constant ¢ defines the DOWN returns relative to the UP returns and is a factor in price
volatility.

PROPOSITION 2

The Kelly investment in the risky asset decreases as c increases. Let (a*,n*) are the
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(shortfall rate, expected shortfall size) for the Kelly strategy. If the wealth gap is g, then
there exists a value g*such that: (i) the rate of shortfall o and the expected shortfall size n*
increase as the downside return parameter ¢ increases when g > g*; (ii) the rate of shortfall
o and the expected shortfall size n* decrease as the downside return parameter c increases
when g < g*.

Proof:

The Kelly strategy is z* = (1 — CW)% and 92 = —77(;% < 0.

With o* = (1 —7) ®(2}) + 7®(23), then 2 = (1 — )@ (2) %L + 7d'(25)%2. With
25 = 2] + %c, simple algebra gives % = ¢>(1Tiw)2 [ — 05¢ (1-— )} 7‘98%2 = %icl + 2. %

59%(1 — c) and positive when

is monotone increasing in ¢ and is 5

g> 05¢ (1 — em). There is a value g* such that 65% < 0if g < g*and % > 0if g > g*.
()

, where

The expected shortfall size is n* = g —
H(c) = (1= m) [1i® (1) — 07 @' (23)] + 7 [13®(25) — 059 (25)]. S = %=

on* _ H(o)

da* ax?

> 0, the increase/decrease in expected shortfall size behaves the same as the
increase/decrease in shortfall rate. [J

The chance of falling below the path and the expected size of the shortfall depend on the
starting position as given by the gap g. Recall that ¢(t) = In(w*(t) — In(w(t — 1)), so that
g(t) < 0 is the case where the target benchmark is below the starting wealth and g¢(¢) > 0
when the target is above the starting wealth. The fact that the performance of the Kelly
strategy depends on wealth suggests that current wealth should be a factor in investment

decisions.

Example 1 The qualitative results consider the effect on downside risk of the expected
rate of return in the down regime and the wealth gap. The effect will be illustrated with an
example. In the computations the values m = 0.8, = 0.2,7 = 0.00004, ¢; = .0003, 6% =
.00015, Sg = .00015 will be used, based on one day returns. Consider, then, in Table 1 the

shortfall rate and in Table 2 average shortfall size for a range of risky investment scenarios.
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g
c | ¢ bs z* | -0.002 [-0.006 [-0.010 | -0.014 | -0.018
2.0 | .0003 | -.0003 | .93 43 30 19 11 .06
2.2 [ .0003 | -.00036 | .85 A2 28 17 .09 .04
2.4 |.0003 | -.00042 | 77 [ 41 26 14 07 .03
2.6 | .0003 | -.00048 | .69 40 24 12 .05 .02
2.8 | .0003 | -.00054 | .61 39 21 .09 03 01
3.0 | .0003 | -.00060 | .53 37 18 .06 02 .00
3,2 | .0003 | -.00066 | .45 35 14 .04 01 .00
3.4 .0003 [ -.00072 | .37 | .32 .09 01 .00 .00
3.6 | .0003 | -.00078 | .29 28 .05 .00 00 .00
3.8 | .0003 | -.00084 | .21 21 01 .00 .00 .00

Table 1: Shortfall Rate: Kelly Strategy

The scenarios are defined by the relative rates in UP and DOWN regimes ¢ = 1 — %, by >
0, ¢ < 0, and the gap g = In(w*) —In(w). In the table the gap is shown as negative, that is
the wealth at the beginning of the period is above the target. A shortfall occurs if the one
period return is less than the gap.

The shortfall rate drops dramatically if the starting position is favorable relative to the
path target. As the downside decreases the Kelly fraction also drops since the investment is
less favorable. The most favorable market scenario (¢ = 2) has an annual return of 4.8% and
the least favorable (¢ = 3.8) has an annual return of 1.8%. The kelly strategy is aggressive
and risky in favorable markets.

The shortfall size as the regime parameter ¢ and the gap above the path g change is
provided in Table 3 for the same settings as Table 2. These numbers show the average
size of the shortfall in terms of daily rate of returns, so the shortfalls are substantial. For

example in the situation where beginning wealth is close to the target (¢ = —0.002), we have

for shortfalls E/ = 0.993 or 99.3% of the target wealth on average. This level of fallback is
equivalent to 17% of starting wealth on an annualized basis. The pattern in average size is
similar to that for the shortfall rate , with the relative returns in UP and DOWN markets

having a slight negative effect.
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g
(¢ -0.002 | -0.006 | -0.010 | -0.014 | -0.018

2.0 | 0.0084 | 0.0072 | 0.0063 | 0.0055 | 0.0049
2.2 | 0.0076 | 0.0065 | 0.0056 | 0.0048 | 0.0042
2.4 | 0.0068 | 0.0057 | 0.0049 | 0.0042 | 0.0036
2.6 | 0.0061 | 0.0050 | 0.0042 | 0.0035 | 0.0031
2.8 | 0.0053 | 0.0043 | 0.0035 | 0.0029 | 0.0025
3.0 | 0.0045 | 0.0035 | 0.0028 | 0.0023 | 0.0020
3,2 | 0.0038 | 0.0028 | 0.0022 | 0.0018 | 0.0015
3.4 | 0.0030 | 0.0021 | 0.0016 | 0.0013 | 0.0010
3.6 | 0.0022 | 0.0015 | 0.0011 | 0.0008 | 0.0007
3.8 | 0.0015 | 0.0009 | 0.0006 | 0.0005 | 0.0004

Table 2: Shortfall Size: Kelly Strategy

For the scenarios presented in Table 1 and Table 2 the Kelly strategy gets more conser-
vative as the downside decreases, since the upside is constant. More volatile scenarios with
increasing upside to match decreasing downside would keep the Kelly investment proportion

high with a corresponding high risk in terms of the rate and size of shortfalls.

4.2 Penalizing Shortfalls in the One Period Problem

The Kelly strategy can have an unacceptable risk of shortfalls particularly in favorable
markets, and that is the motivation for controlling the rate and size of shortfalls relative
to a benchmark. An intuitive approach is to use a fractional Kelly strategy, where the
proportional allocation to risky assets is the same as the Kelly but the total wealth invested
in risky assets is reduced to a fraction of the Kelly investment in risky assets. There are
a variety of ways for determining the fraction, including using a power utility. (MacLean,
Zhao and Ziemba, 2006.) The fraction will be considered here from the perspective of the
VaR constraint and path penalty. There is a single risky asset (Kelly portfolio), and the
investment fraction in the Kelly portfolio is selected to satisfy both the rate constraint and
the size penalty. The strategy will depend on the path and the starting wealth, as opposed
to the pure Kelly.

The constrained one period problem problem is
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maz { F(X(1))|G(X(t)) <0,X " (t)e =1}.

Consider the market described previously with UP/DOWN regimes, where b1 = b,y =
(1—¢)p, 0y = by = 0, = 1—m, my = m. With z the fraction invested in the risky asset (Kelly
portfolio), let x = fz*, where x* = argmax {((1 —cm)or — %xzéz)} is the Kelly strategy.
The Kelly shortfall rate is a* = Pr[In(R(z*) < g]. Assume z* > 0.

Proposition 3

Let f*be the optimal fraction for the constrained one period problem, the required shortfall
rate be o and the shortfall size penalty be ~.

(i) For given penalty, the optimal fraction f*decreases as the rate o decreases.

(i1) For given rate, the optimal fraction f*decreases as the penalty ~ increases.

Proof:

Consider F(z) = ((1 — )¢z — 12%0%) — vg(t) (m1P(21) + m®(22))

+y{m [P (z1) — 1P (21)] + w2 [2P(22) — 02P'(22)]} and G(z) = mP(21)+mP(20) — v,

~ = < —|a(¢pp—7)+7— L2252
where p, = (cbk; — f) + 7 — 2226} and o}, = 20 , and 2z, = 9(®)—[a(n IS;f 57°57] for

k=12

The following inequalities hold for 0 < x < z*,

9 L 9%
%<(1—c7r)¢x—§x5> >0

0
p (m1P(21) + mP(22)) > 0

% {m1 [ ®(21) — 1@ (21)] + 7o [p2®(22) — 02®(22)]} < 0
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% {mi [ ®(z1) — 019 (21)] + 2 [12D(22) — 2@ (22)] — g(t) (M1 P (21) + m2P(22))} < O.
Consider the Lagrangian L(z, \) = F(z)—AG(x). Let L(z, A|a,v) = ((1 — em) gz — 52%6?)
Ty {m 11 ®(21) — 019 (21)] + 72 (2P (22) — 029" (22)] — g(t) (M1 P(21) + m2P(22)) }
—AN(mP(21) + mP(22)) — a. For optimal multiplier \*, maz, {L(x, \*|a,71)} >
maz, {L(z, Nla,y2)} for 0 < v < % and z,, = argmar{L(z,\"|a, )} >, =

argmaz {L(x, \*|a,v2) } .

With x,, = f,2",z,, = f,2", we have f,, > f, . Similarly maz, {L(z, \*[ay,7)} <
mazy { L(z, \*|ag,v)} for 0 < ay < ag implies f,, < fo,.0

Example 2

Consider the one period problem with starting wealth gap ¢ and reliability level a =

0.05, where m = 0.8, m = 0.2,7 = 0.00015 and the values for daily return on stocks are

$1 = 0.000375, 3 = —0.0005 and 62 = 62 = 0.000225. For this example the Kelly strategy

is to invest the fraction z* = 0.22 in stock. Recall that ¢ = w*(t) — w(t — 1), the wealth
position relative to the path benchmark. Table 4 gives the investment in stock as a fraction

of the Kelly for a range of values for the parameter g and penalty parameter ~.

8
[-.016 [-.014 [ -.012 [ -.010 | -.008 | -.006 | -.004 [ -.002
1.0 [ 1.0 [ 099 | 091 | 078 [ 057 | 0.50 | 0.49
1.0 | 098 | 0.92 | 0.81 | 0.67 | 052 | 0.36 | 0.19
10| 1.0 | 095 | 0.86 | 0.74 | 0.61 | 047 | 032 | 0.17

N O

Table 3: Kelly Fractions: f*

If starting wealth is close to the path target, the one period investment strategy is con-
servative when the shortfall rate constraint is imposed. A higher starting position leads to
investment closer to the full Kelly strategy. In the growth framework it is never optimal to

invest more than the full Kelly because growth falls and risk increases. The effect of the
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penalty on the investment fraction is significant, with the fraction decreasing as the penalty

increases.

5 Multiperiod Multi-asset Problem

The capital growth problem with path shortfall conditions is a multiperiod problem which
is decomposed into a sequence of one period problems. The analysis of the Kelly strategy
in Section 4 considered the one period problem, and restricted investment opportunities to
a single asset, the Kelly portfolio. For the problem with a VaR constraint and penalized ob-
jective, it is clear that introducing the path through the gap parameter ¢ has a substantial
impact on the single period investment strategy. In this section the problem with multi-
ple periods and multiple risky assets is considered. When there are many risky assets in
the constrained growth problem, the proportional investments in assets would usually not
correspond to the Kelly portfolio. The gap is the linking condition between periods in the
multiperiod problem. To observe the pattern in the gap between current wealth and the path
target and its effect on the sequence of investment decisions in multiple assets, a multiperiod
problem is solved as a linked sequence of one period multi-asset problems.

Assume there is a risk free asset and two risky assets, stocks and bonds, with the invest-
ment fractions in period ¢ being (zo(t), z1(t), z2(t)). There is initial wealth of w(0) = $100
and three regimes in the financial market; bull, transition, bear. The regimes are driven by a
Markov switching process. The risky returns are considered to be lognormal, with parameter

settings for daily asset price dynamics as follows:

e Daily rate of return on stocks and bonds <Z~>j,j = 1,2, 3, respectively (annualized):

—0.1 0.015 0.25
0.035 0.06 —0.02
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e Covariance of daily returnsA? by regime j = 1,2,3 ,respectively (annualized):

0.09  —0.0108 0.0484 0.0099 0.0025 —0.0015
—0.0108  0.0324 0.0099 0.0225 —0.0015  0.01

e DailyTransition matrix for regimes:

0.75 0.15 0.1
P=1 01 08 0.1
0.2 0.1 0.7
e Initial probability for regimes:
7(0) = (0,1,0).
e Daily Risk free rate (annualized):
7 =0.02.

e The target path will be developed sequentially depending on the status with respect
to the path in the previous period. If there is a shortfall, so that w(t — 1) < w*(t — 1),
then w*(¢t) = 1.01 x w(t — 1). If the target is exceeded , so that w(t — 1) > w*(t — 1),
then w*(t) = 0.99 x w(t — 1). The intention is to relax the path requirement if the
results are postive, thereby taking more risk. If the realized return is below the target
the investor is constrained to recover some of the loss and that will force a more

conservative strategy. The chosen rates (0.99,1.01) are for illustration.

The investment decisions are made daily for a period of one year: T = 256. At each time

point the one period problem with the VaR constraint and penalty on path violations is

mazxm {F(X(t),7,9(t)|G(X(t),a,9(t) <0,X " (t)e =1},
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where F(X(t),v,9(t)) =

S m(t) - ()] -
3 25 (X (1))
1o [ (o) - ) + - o) (),

and G(X(t),7, 9(t) = Spoy m(t) [ fr(2)dz — .

This is a nonconvex problem and a Monte Carlo approach is used to get the solution.
(Mockus, 1989.)

In the one period problem at the start of period ¢ , the values (m(t),...,m3(t)) are
determined by the transition probabilities and the distribution over the regimes at time
t — 1. The transition probabilities and the asset return parameters are known in the problem
studied here. In practice the parameters and probabilities are estimated. The EM algorithm
(Dempster, 1977; Hamilton, 1989) is used to estimate those values in the hidden Markov
model from the history of returns on risky assets.

To test the decision model, 5000 trajectories of 256 trading days are generated from the
returns distributions. Along a trajectory the single period decision algorithm is implemented

sequentially. A variety of performance statistics are calculated:

1. The violation probability — the relative frequency with which the wealth at the end
of a period drops below the path target for that period. That is an average over the

multiple decision periods.

2. The average final wealth = the average over the 5000 trajectories of the wealth after

256 trading days.

3. The Sharpe ratio for final wealth = the average risk adjusted return divided by the

standard deviation.
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4. The average cumulative shortfall = the average over the 5000 trajectories of the total

shortfall along a trajectory.

Performance statistics for a selection of risk control settings are presented in Table 4.

Measure Alpha Gamma

0 2 10
0.05 0.1482 0.0183 0.0040
Violation Probability | 0.25 0.3504 0.0186 0.0037
0.50 0.4100 0.0154 0.0040
0.05 113.0546 | 106.2743 | 105.1149
Av Final Wealth 0.25 118.8159 | 106.5073 | 105.3578
0.50 | 121.4290 | 106.2784 | 105.0543
0.05 0.5229 0.5558 0.5862
Sharpe Ratio 0.25 0.5156 0.5328 0.6590
0.50 0.5408 0.5866 0.5940
0.05 -70.7486 -7.9375 -2.0899
Av Cum shortfall 0.25 | -177.6402 | -8.3683 | -1.7586
0.50 | -243.5916 | -5.6936 -1.7966

Table 4: Performance Statistics

The v = 0 numbers are for the investment model with the path VaR constraint, but
no penalty on shortfalls. The weak constraint with o = 0.50 has a lot of downside. This
corresponds to the Kelly case,where there is maximum growth rate but potentially large
downside losses. Even the stricter condition with a = 0.05 still has a high shortfall rate and
high average cumulative shortfall when there is no penalty in the objective.

When the penalty on shortfalls is introduced, the effect is quite dramatic. Both the rate
and average size are decreased substantially. The largest penalty v = 10 has negligible rate
and average size, and the average final wealth is comparable to that of the moderate penalty
of v =2.

To indicate the effect of the risk control settings («,~y) on decisions the monthly average

weights in stocks, bonds and cash are given in Figure 1 for values of a and 7.
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Figure 1: Investment Fractions
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The Kelly case where o = 0.5,y = 0 is highly levered, with strong investment in stock

financed by borrowing - negative in the risk free asset. Without the penalty (v = 0), the

VaR constraint is active when a = 0.05, and the effect is a dramatic shift to the risk free

asset. The investment fractions in the stock and bond are different from the Kelly, that is

the strategy is not fractional Kelly. When the penalty is introduced into the objective the

fraction in stocks declines substantially for all « settings, with a corresponding increase in

the fraction in the risk free asset. The total investment in risky assets changes with the

control settings, and also the relative fraction of the risky investment in stocks and bonds

changes. The solution in the multiple risky asset case is not fractional Kelly per se, but it is
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an optimal growth strategy subject to control conditions.

An important goal of the VaR constraint and shortfall penalty is to smooth the wealth

trajectory. Figure 2 displays a sampling of 10 trajectories for values of « and 7. A lower

bound of 96 and an upper bound of 116 are used to emphasize effects. Again the effect of the

penalty is significant. The downside is controlled and the majority of trajectories experience

positive growth at each time period.
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6 Conclusion

In the Kelly optimal capital growth problem where the rate of return to the horizon is max-
imized, the solution is usually very aggressive and the chance of significant loss of capital
in the short to medium term is too large. A VaR constraint on the wealth trajectory con-
trols the risk of losses, but the size of losses is crucial. In this paper both the chance and
size of losses is controlled. The loss shortfall is penalized in the objective with a wealth
discounting approach. This retains the geometric character of the wealth process, or equiv-
alently the arithmetic character of log-wealth. The model parameters are the VaR level, the
VaR probability «, and the shortfall penalty v. The impact of the parameters on strategies
and accumulated capital is studied analytically with one risky asset (security) and a riskless
asset. The methodology is also applied to the fundamental problem of investing in stocks
and bonds over time. The convex penalty has the advantage of smoothing the trajectory of
accululated capital while achieving capital growth. Excessive penalization of shortfalls leads

to a path with little volatility, but it falls below low penalty paths along the full trajectory.
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