DISCUSSION:

Endogenous Specialization and Dealer Networks

ARTEM NEKLYUDOV AND BATCHIMEG SAMBALAIBAT

Maryam Farboodi

Princeton University

December 9, 2016

A search-based framework of OTC asset markets

- ► Underlying heterogeneity: rate of change of taste for asset for costumers
- Dealer network
 - Core-periphery dealer
 - Intermediation

Nice model: search is a useful trick to model frictions in OTC markets

- $1. \ {\rm Overview \ of \ the \ model}$
- 2. Relation to other work
- 3. Broader perspective: heterogeneity
- 4. Model implications

OVERVIEW OF THE MODEL

- Continuous time, infinite horizon model
- Single asset with flow utility $(\delta, \delta x)$ when (h, l)
 - Asymmetry between h and l
- Agents
 - 3 ex-ante homogeneous dealers
 - Continuum of customers with heterogeneous rate of change in flow value, intensity k
- Each customer picks one dealer to buy from when h and sell to when l
 - Buyer, seller, happy owner
- Matching technology
 - Single dealer: $\lambda_D \to \lambda_D \mu_i^s \mu_i^b$

• Inter dealer:
$$\lambda_{DD} \rightarrow \lambda_{DD} \left[\mu_i^s \left(\sum_j \mu_j^b \right) + \left(\sum_j \mu_j^s \right) \mu_i^b \right]$$

▶ Bargaining: *z*_D, *z*_{DD} customer share

- Symmetric Equilibrium
 - > All 3 dealers symmetric in measures of their customers in different states

- Symmetric Equilibrium
 - ► All 3 dealers symmetric in measures of their customers in different states
- Asymmetric equilibrium
 - 1. Single active-dealer
 - 2. All dealers active: $\lambda_{DD} z_{DD} > \lambda_D z_D$

Multiple-Dealers Asymmetric Equilibrium

Core-Periphery Network

- Specialization
- Core versus peripheral dealer
 - ► Core dealers specialize in customers who trade often: *liquidity investors*
 - > Peripheral dealers specialize in customers who don't: *buy-and-hold investors*
- Peripheral customers: lower value for lower price
 - Lower option value of search
 - At a lower price

Multiple-Dealers Asymmetric Equilibrium

Core-Periphery Network

- Specialization
- Core versus peripheral dealer
 - ► Core dealers specialize in customers who trade often: *liquidity investors*
 - > Peripheral dealers specialize in customers who don't: buy-and-hold investors
- > Peripheral customers: lower value for lower price
 - Lower option value of search
 - At a lower price
- ▶ Why do liquidity customers get a *better value* (at a higher price)?
 - Assumption. Intermediated trades lead to higher expected share: $\lambda_{DD} z_{DD} > \lambda_D z_D$
 - Endogenous. Intermediated trades more valuable
 - Farboodi, Jarosch, Shimer (2016)

- Symmetric equilibrium inefficient
- Asymmetric equilibrium inefficient as well
 - Liquidity (core) dealer too large
 - Atkeson, Eisfeldt, Weill (2015)
 - Too much entry to intermediation sector and too little entry to customer sector

- Ex-anter dealer heterogeneity
 - Atkeson, Eisfeldt, Weill (2015)
 - Dealers heterogeneous in exposure to aggregate risk
 - Agents with average exposure intermediate
 - Chang and Zhang (2016)
 - Dealers heterogeneous in taste volatility
 - Agents with lower volatility intermediate

- Ex-anter dealer heterogeneity
 - Atkeson, Eisfeldt, Weill (2015)
 - Dealers heterogeneous in exposure to aggregate risk
 - Agents with average exposure intermediate
 - Chang and Zhang (2016)
 - Dealers heterogeneous in taste volatility
 - Agents with lower volatility intermediate
- How does this paper related to them?
 - Micro-found heterogeneity among dealers using customer heterogeneity

- Ex-anter dealer heterogeneity
 - Atkeson, Eisfeldt, Weill (2015)
 - Dealers heterogeneous in exposure to aggregate risk
 - Agents with average exposure intermediate
 - Chang and Zhang (2016)
 - Dealers heterogeneous in taste volatility
 - Agents with lower volatility intermediate
- How does this paper related to them?
 - Micro-found heterogeneity among dealers using customer heterogeneity
- Others
 - Artem's jmp, Uslu (2016) jmp
 - Ex-ante heterogeneity in meeting rate: fast agents intermediate
 - Hugonnier, Lester, Weill (2016)
 - Agent with close-to-average taste intermediate

- Some ex-ante heterogeneity, no ex-ante designated dealers
 - My jmp!
 - Rent-seeking versus counterparty risk
 - Wrong intermediators
- No ex-ante heterogeneity at all
 - Wang (2016) jmp
 - Trade-off: competition among core dealers to give favorable quotes versus ability to offset inventory and avoid cost
 - Periphery too-connected to the core
 - Relation to this paper: $\lambda_{DD} z_{DD} > \lambda_D z_D$

- Some ex-ante heterogeneity, no ex-ante designated dealers
 - My jmp!
 - Rent-seeking versus counterparty risk
 - Wrong intermediators
- No ex-ante heterogeneity at all
 - Wang (2016) jmp
 - Trade-off: competition among core dealers to give favorable quotes versus ability to offset inventory and avoid cost
 - Periphery too-connected to the core
 - Relation to this paper: $\lambda_{DD} z_{DD} > \lambda_D z_D$

Common theme in all search-based models

- Agents with moderate taste are central dealers
- How to generate moderate taste?

WHERE DOES THE HETEROGENEITY COME FROM? FARBOODI, JAROSCH, SHIMER (2016)

- Plain-vanilla DGP (Eca'05), with a twist!
- Measure one of risk-neutral investors, discount rate $r \rightarrow 0$
- ► Two preference states, {*I*, *h*}
 - ▶ Switch at homogeneous, exogenous rate $\gamma > 0$
- A single type of asset, supply $\frac{1}{2}$
 - Asset holding restricted to {0,1}
 - Trading opportunities at endogenous rate λ
- Twist! λ chosen irrevocably at time 0, cost $c(\lambda)$ per meeting
 - $G(\lambda)$: population distribution of λ
 - Λ: average contact rate
- Payoffs
 - Well-aligned (h, 1), (I, 0): higher average flow payoff
 - Misaligned (h, 0), (I, 1): lower average flow payoff
 - (symmetric) Nash bargaining

RESULTS

PROPOSITION

Pattern of Trade given $G(\lambda)$: core-periphery with fast agents at the core

PROPOSITION

Assume $c(\lambda)$ is continuously differentiable. Then the equilibrium distribution of search efficiency $G(\lambda)$ has no mass points, except possibly at $\lambda = 0$.

PROPOSITION

Assume $\lambda c(\lambda)$ is weakly convex. Then the equilibrium distribution of search efficiency $G(\lambda)$ has a convex support. Moreover, if there are middlemen $(\Lambda > \int_0^\infty \lambda dG(\lambda))$, the support of $G(\lambda)$ is unbounded above.

PROPOSITION

Assume $\lambda c(\lambda)$ is weakly convex and continuously differentiable. Then the equilibrium misalignment rate $m(\lambda)$ is strictly increasing on the support of $G(\lambda)$.

PROPOSITION

Assume $c(\lambda) = c$. If $c \ge \Delta/16\gamma$, $\Lambda = 0$ in equilibrium; while if $c < \Delta/16\gamma$, the equilibrium distribution of contact rates $G(\lambda)$ exists and is unique. It has a strictly positive lower bound $\underline{\lambda}$ and has a Pareto tail with tail parameter two. A strictly positive fraction of meetings accrues to a zero measure of middlemen who are in continuous contact with the market, $\Lambda > \int_0^\infty \lambda' dG(\lambda')$.

PROPOSITION

Assume $c(\lambda) = c < \Delta/16\gamma$. The equilibrium distribution of trading rates inherits the tail properties of the contact rate distribution, i.e. it has a Pareto tail with tail parameter two.

Why Does Heterogeneity Arise Endogenously?

To leverage gains from intermediation!

The current paper!

PROPOSITION

Everything I said, qualitatively hold for the planner as well!

PROPOSITION

If you shut down intermediation, equilibrium and planner distribution are both homogeneous.

- Inefficiency
 - Over-investment
 - Too few fast agents and too few slow agents
 - Different from this model, and AEW (Eca'15)

MODEL IMPLICATIONS

- ► This model: symmetric equilibrium exists
 - ▶ Farboodi, Jarosch and Shimer (2016)
 - No symmetric equilibrium!

MODEL IMPLICATIONS

- This model: symmetric equilibrium exists
 - Farboodi, Jarosch and Shimer (2016)
 - No symmetric equilibrium!
- ▶ This model: $\lambda \rightarrow \infty$: no dealer heterogeneity
 - Farboodi, Jarosch and Menzio (2016)
 - Agents can invest in bargaining ability
 - Even at the limit, both heterogeneity and inefficiency persists

MODEL IMPLICATIONS

- This model: symmetric equilibrium exists
 - Farboodi, Jarosch and Shimer (2016)
 - No symmetric equilibrium!
- This model: $\lambda \to \infty$: no dealer heterogeneity
 - Farboodi, Jarosch and Menzio (2016)
 - Agents can invest in bargaining ability
 - Even at the limit, both heterogeneity and inefficiency persists
- Why the difference?
 - It is important to recognize agents' ability to *invest* in *comparative* advantage
 - Heterogeneity is not only in equilibrium "dependent" outcomes, but also in equilibrium fundamentals

- Proof of asymmetric equilibrium is for 2 dealers, does it really generalize to more?
- Asymmetric mixed strategy equilibria?
- $\blacktriangleright \ \lambda_{DD} z_{DD} > \lambda_D z_D$
- Single core outcome: full dry-out?
 - Uninteresting?
 - Babus and Parlatore (2016)