Market Design	Examples	Impacts	Conclusions	References

Quality of tick values

Marcos Costa Santos Carreira and Florian Huchede

CMAP - Ecole Polytechnique and CME

The Regulation and Operation of Modern Financial Markets -Reykjavik, 06-Sep-2019

η	Market Design	Examples	Impacts	Conclusions	References
00000000	000	00000000	0000	OO	O
Contents					

1 Uncertainty Zones

2 Market Design

3 FX futures

η	Market Design	Examples	Impacts	Conclusions	References
0000000					

Counting moves

• $2 \cdot \eta \cdot \alpha$ is a natural spread

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

(1)

- Estimate time to reach frontiers of UZ
- UZ had size $2 \cdot \eta \cdot \alpha$ and is centered at mid-ticks $(P_i + \frac{\alpha}{2})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

	Market Design			Conclusions	References
0000000	000	0000000	0000	00	
As time	goes by				

- Durations (Δt to next price change) are different
- But average durations can be estimated: $Dur \approx 2 \cdot \eta \cdot \left(\frac{\alpha}{\sigma \cdot S}\right)^2$
- Then number of price changes is inversely proportional to $2 \cdot \eta \cdot \left(\frac{\alpha}{\sigma \cdot S}\right)^2$

η 00000000	Market Design 000	Examples 00000000	Impacts 0000	Conclusions 00	References O
	1				
Informed	l trading				

- Two FX contracts in Brazil, same tick size, underlying and settlement, but different size
- Open contracts / traded volume very different => informed traders
- Trades / Price changes: 2.71 DOL, 2.97 WDO

	Market Design			Conclusions	References
0000000	000	0000000	0000	00	
Imbalance					

• Predictive power of imbalance (trade as expected - trade as not expected)

A D > A P > A D > A D >

э

- Smaller η means imbalance is more predictive
- Equivalent to microprice leaving earlier a smaller UZ

	Market Design		Conclusions	References
00000000				
Fight or	flight			
	ingit.			

- Depletions by cancel or trade
- Smaller η means more depletions by trade, not by cancel

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

η	Market Design	Examples	Impacts	Conclusions	References
00000000	000	00000000	0000	OO	O
Regenera	tion				

- Once depletions by trade happened, smaller η means more fills by the original side
- Once a fill happens, smaller η means more depletions on the opposite side

A D > A P > A D > A D >

ж

η	Market Design	Examples	Impacts	Conclusions	References
0000000	000	00000000	0000	OO	O
What is	being meas	ured?			

• Market makers hope to earn the spread but fear the informed trader

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Top of the book valuable but total size of best level important (buffer against informed trading)
- Summarize $VTB = 1 2 \cdot \eta$

η	Market Design	Examples	Impacts	Conclusions	References
00000000	●00	00000000	0000	00	O
Futures					

- Availability of spot for price formation
- Leverage and liquidity might bring diverse ecology of traders
- Global futures exchanges liquidity over a large period of the day

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• But how to choose size of contract and tick size?

	Market Design	Examples	Impacts	Conclusions	References
	○●○	00000000	0000	00	O
Shakesp	eare in 160	milliseconds			

Hamlet => Macbeth

Avoid excessive quotes with low amount of information

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	Market Design	Examples	Impacts	Conclusions	References
	00●	00000000	0000	00	O
Factors t	o consider				

- Spread of underlying
- Ime-weighted average spread
- Average price change (related to λ_i)
- η (assuming the factors above validate the assumption of a large tick asset)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Average cost curve
- Ouration (incorporates volatility and relative tick size)
- Direct costs of trading (exchange fees)

	Market Design	Examples	Impacts	Conclusions	References
0000000	000	●0000000	0000	00	

Averages

Product	Tick	δP	5	Volume	М	# δP	Calc	η	# S=	λ_1	σx
EUR	1.0	1.017	11060	100764	24142	4260	4655	0.274	0.984	0.986	0.438%
EUR	0.5	0.534	11189	85659	28417	8217	10570	0.364	0.940	0.940	0.375%
CAD	1.0	1.018	7538	41609	12129	1915	2049	0.338	0.984	0.983	0.486%
CAD	0.5	0.532	7578	37110	13319	3582	4471	0.386	0.914	0.943	0.376%
JPY	1.0	1.012	8330	62169	10936	1653	1790	0.235	0.990	0.991	0.338%
JPY	0.5	0.518	8205	58368	14735	3243	4781	0.335	0.964	0.974	0.304%
MXN	12.5	25.293	76526	17968	2321	216	225	0.196	0.991	0.991	0.298%
MXN	5.0	10.262	75181	26480	4760	765	836	0.327	0.986	0.980	0.305%

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

	Market Design	Examples	Impacts	Conclusions	References
	000	0000000	0000	OO	O
l've seen	the future				

• Predict next η

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

	Market Design	Examples	Impacts	Conclusions	References
	000	00●00000	0000	OO	O
l've seen t	the future				

• Predict durations given tick value and spot, volatility, η

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

	Market Design	Examples		Conclusions	References
00000000	000	00000000	0000	00	
l've seen	the tuture				

• Predict number of price changes given durations (tick value and spot, volatility, η)

	Market Design	Examples	Impacts	Conclusions	References
00000000	000	00000000	0000	00	0
l've seen	the future				

Predict number of trades given number of price changes (ratio k)
After: EUR 2.5, CAD 3.2

A D > A P > A D > A D >

3

	Market Design	Examples		Conclusions	References
0000000	000	00000000	0000	00	
Looking	behind the	curtain			

• Predictive power of imbalance

ъ

A D > A B > A B > A B >

- 2

Market Design	Examples	Impacts	Conclusions	References
	00000000			

Looking behind the curtain

Depletions

・ 一下・ ・ ヨ ト ・

	Market Design	Examples	Impacts	Conclusions	References
		0000000			
1 I.	1.1.1.1.1.1.1.1.1				

Looking behind the curtain

• Depletions and fills

(a)

æ

	Market Design	Examples	Impacts	Conclusions	References
	000	00000000	0000	00	O
Posted I	iquidity				

	prior after				
		Ċ	2		
Currency	Tick	Bid	Ask		
EUR	2.0	2.64	2.62		
CAD	2.0	2.15	2.14		
JPY	2.0	2.04	2.08		
MXN	2.5	3.12	3.38		

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

η	Market Design	Examples	Impacts	Conclusions	References
00000000	000	00000000	○●○○	OO	O
All toget	her now				

•
$$\frac{V_1}{V_0} = \frac{\beta_{V,M,1}}{\beta_{V,M,0}} \cdot \frac{M_1}{M_0} = \frac{\beta_{V,M,1}}{\beta_{V,M,0}} \cdot \frac{k_1}{k_0} \cdot \frac{\#\delta P_1}{\#\delta P_0}$$

•
$$\frac{V_1}{V_0} = \frac{\beta_{V,M,1}}{\beta_{V,M,0}} \cdot \frac{k_1}{k_0} \cdot \frac{\eta_0}{\eta_1} \cdot \left(\frac{\alpha_0}{\alpha_1} \cdot \frac{S_1}{S_0} \cdot \frac{\sigma_1}{\sigma_0}\right)^{\frac{1}{2}}$$

• Estimate ratio between volume and number of trades (β) using posted liquidity:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\frac{\beta_{V,M,1}}{\beta_{V,M,0}} = \left(\frac{\alpha_1}{\alpha_0}\right)^{\gamma}$$

• $\frac{V_1}{V_0} = \left(\frac{S_1}{S_0} \cdot \frac{\sigma_1}{\sigma_0}\right)^2 \cdot \frac{k_1}{k_0} \cdot \frac{\eta_0}{\eta_1} \cdot \left(\frac{\alpha_0}{\alpha_1}\right)^{2-\gamma}$

η	Market Design	Examples	Impacts	Conclusions	References
00000000	000	00000000	0000	OO	O
Volatile v	volume				

•
$$\frac{V_1}{V_0} = \left(\frac{11189}{11059} \cdot \frac{0.00375}{0.00438}\right)^2 \cdot \frac{2.6}{3.6} \cdot \frac{0.27}{0.37} \cdot \left(\frac{1}{0.5}\right)^{2-\gamma}$$

• $\frac{V_1}{V_0} = 0.75 * 0.527 \cdot (2)^{2-\gamma}$
• $\gamma = 1$
• $\frac{V_1}{V_0} = 0.80$ (realized 0.85)

▲ロト ▲舂 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

	Market Design	Examples	Impacts	Conclusions	References
	000	00000000	0000	OO	O
Tale of th	ne tape				

- Average cost of each trade
- Group by amount traded and average
- Average results by amount over time

η	Market Design	Examples	Impacts	Conclusions	References
00000000	000	00000000	0000	00	0
What th	is talk was a	about anywa	av?		

Market design

- Exchanges need to keep all customers equally unhappy
- Tick value and η helps to determine spread, liquidity, cost/market impact
- Presence of informed traders increases η , spreads
- Dashboard of factors to measure and monitor

What η measures

- Not only mean reversion
- Predictive power of imbalance
- Relative proportion and sign of depletions by cancel and trade and refills

• $1 - 2 \cdot \eta$ as relative value of top of book (first place in queue)

η	Market Design	Examples	Impacts	Conclusions	References
00000000	000	00000000	0000	O●	O
What is	next?				

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Link to Queue Reactive model
- Expand model to other futures
- Even price level changes are a natural experiment

	Market Design			Conclusions	References			
00000000	000	0000000	0000	00	•			
Books, papers, website								

- Robert, C. Y. and Rosenbaum, M. (2009): "Volatility Estimation under Endogenous Microstructure Noise"
- Dayri, K. and Rosenbaum, M. (2015), "Large Tick Assets: Implicit Spread and Optimal Tick Size
- Huang, W., Lehalle, C.-A. and Rosenbaum, M. (2015), "Simulating and analyzing order book data: The queue-reactive model
- Huang, W., Rosenbaum, M. and Saliba, P. (2019), "From Glosten-Milgrom to the whole limit order book and applications to financial regulation"
- Chaboud, A., Dao, A. and Vega, C. (2019): "What makes HFTs tick?"
- https://quantreg.com/ : Analytics and Models for Regulation at CMAP – École Polytechnique