Systemic Risk and Central Clearing Counterparty Design

Andreea Minca (joint with Hamed Amini and Damir Filipović)

Systemic Risk in Derivatives Markets: The Fourth Annual Conference on Systemic Risk Modeling
October 14 2016

What this paper is about

- Examine effects of central clearing counterparty (CCP) on a financial network from ex post and ex ante (systemic risk measure) perspective
- Propose CCP design with "hybrid" guarantee fund that is netted against liabilities
- Simple enough for exact analysis of trade off between systemic risk reduction and banks' incentive to join CCP
- Sophisticated enough to capture real world orders of magnitude of capital, guarantee funds, and fees (stylised CDS OTC market data BIS 2010)

Main findings

- Ex post: CCP reduces banks' liquidation and shortfall losses, improves aggregate surplus
- Ex ante: find explicit threshold on CCP capital and guarantee fund for systemic risk reduction
- Design of "hybrid" guarantee fund netted against liabilities is superior to ("pure" guarantee) default fund plus margin fund
 - hybrid implies similar systemic risk
 - hybrid gives much larger banks' incentive compatibility

Outline

- Financial network
- 2 Central counterparty clearing
- 3 Ex post effects of central counterpary clearing
- Systemic risk and incentive compatibility
- Simulation study

Outline

- Financial network
- 2 Central counterparty clearing
- 3 Ex post effects of central counterpary clearing
- 4 Systemic risk and incentive compatibility
- 5 Simulation study

Setup

- Two periods t = 0, 1, 2
- Values at t = 1, 2 are random variables on (Ω, \mathcal{F})
- m interlinked banks $i = 1 \dots m$

Instruments

Bank i holds

- Cash γ_i : zero return
- External asset (e.g. long-term investment maturing at t = 2):
 - fundamental value Q_i at t = 1, 2
 - liquidation value $P_i < Q_i$ at t = 1
- Interbank liabilities:
 - formation at t = 0
 - realization/expiration at t=1: L_{ij}
- No external debt

Example of interbank liabilities: CDS (premiums paid before t=0. At t=1 change in credit spreads or defaults)

Interbank liabilities realize at t=1

- $L_{ij}(\omega)$ cash-amount bank i owes bank j
- $L_i = \sum_{i=1}^m L_{ij}$ total nominal liabilities of bank i
- $\sum_{j=1}^{m} L_{ji}$ total nominal receivables from other banks (assets)

Bank i's nominal balance sheet at t = 1

Assets

$$\gamma_i + \sum_{j=1}^m L_{ji} + Q_i$$

Liabilities

$$L_i$$
 + nominal net worth

Nominal cash balance

$$\gamma_i + \sum_{j=1}^m L_{ji} - L_i$$

Liquidation of external asset at t = 1

• If bank i's cash balance is negative,

$$\gamma_i + \sum_{j=1}^m L_{ji} < L_i$$

it sells external assets at liquidation price $P_i < Q_i$

Bank i is bankrupt if

$$\underbrace{\gamma_i + \sum_{j=1}^m L_{ji} + P_i}_{\text{liquidation value of assets}} < L_i,$$

and then bank j receives a part of liquidation value of bank i's assets

Interbank liability clearing equilibrium

Interbank liability clearing equilibrium defined as (L_{ii}^*) satisfying

Fair allocation:

$$0 \leq L_{ij}^* \leq L_{ij}$$

② Clearing: $L_i^* = \sum_{j=1}^m L_{ij}^*$ satisfies

$$L_i^* = L_i \wedge \left(\gamma_i + \sum_{j=1}^m L_{ji}^* + P_i\right), i = 1 \dots m$$

Assumption: Let (L_{ij}^*) be an interbank liability clearing equilibrium

Example of interbank clearing equilibrium

Eisenberg and Noe (2001): proportionality rule $\Pi_{ij} = L_{ij}/L_i$ and

$$L_{ij}^* = \Pi_{ij} L_i^*$$

with clearing vector $\mathbf{L}^* = (L_1^*, \dots, L_m^*)$ determined as fixed point

$$\Phi(\mathbf{L}^*) = \mathbf{L}^*$$

where $\Phi:[0,\boldsymbol{L}]\to[0,\boldsymbol{L}]$ is given by

$$\Phi_i(\ell) = L_i \wedge \left(\gamma_i + \sum_{j=1}^m \ell_j \Pi_{ji} + P_i\right), i = 1 \dots m$$

Eisenberg and Noe (2001): If $\gamma_i + P_i > 0$ for all i then there exists a unique interbank clearing equilibrium.

Bank i's terminal net worth at t = 2

• Fraction of liquidated external asset

$$Z_i = \frac{\left(L_i - \gamma_i - \sum_{j=1}^m L_{ji}^*\right)^+}{P_i} \wedge 1$$

Assets

$$A_i = \gamma_i + \sum_{j=1}^{m} L_{jj}^* + Z_i P_i + (1 - Z_i) Q_i$$

Net worth

$$C_i = A_i - L_i$$

Bankruptcy characterization

• Shortfall of bank i equals

$$C_i^- = L_i - L_i^*$$

• Bank i is bankrupt if and only if

$$C_i < 0$$
 (or $L_i^* < L_i$)

• If bank i is bankrupt then all its external assets are liquidated

$$Z_i = 1$$

Aggregate surplus identity

Lemma: The aggregate surplus depends on interbank liabilities only through implied liquidation losses:

$$\sum_{i=1}^{m} C_{i}^{+} = \sum_{i=1}^{m} \gamma_{i} + \sum_{i=1}^{m} Q_{i} - \sum_{i=1}^{m} Z_{i}(Q_{i} - P_{i}).$$

- ightarrow Forced liquidation of external assets lowers aggregate surplus.
- ightarrow Absent external asset, cash gets only redistributed in network. No dead weight losses.

Outline

- Financial network
- 2 Central counterparty clearing
- 3 Ex post effects of central counterpary clearing
- 4 Systemic risk and incentive compatibility
- 5 Simulation study

Central Clearing Counterparty (CCP)

- We label the CCP as i = 0
- All liabilities are cleared through the CCP
- → star shaped network
 - Proportionality rule: CCP liabilities have equal seniority
- → interbank clearing equilibrium is trivial (no fixed point problem)

Capital structure of CCP

- The CCP is endowed with
 - ullet external equity capital γ_0
 - guarantee fund

$$\sum_{i=1}^{m} \mathbf{g_i}$$

where $\mathbf{g_i} \leq \gamma_i$ is received from bank i at time t = 0

- Guarantee fund is hybrid of margin fund and default fund:
 - GF payment g_i netted against bank liability (margin fund)
 - GF absorbs shortfall losses of defaulting banks (default fund)
- Banks' shares in the guarantee fund have equal seniority

Liabilities

Bank i's net exposure to CCP

$$\Lambda_i = \sum_{j=1}^m L_{ji} - \sum_{j=1}^m L_{ij}$$

Bank i's nominal liability to the CCP (netting)

$$\widehat{L}_{i0} = \left(\Lambda_i^- - \mathbf{g_i}\right)^+$$

CCP's nominal liability to bank i

$$\widehat{L}_{0i} = (1 - f)\Lambda_i^+$$

 \rightarrow CCP charges a volume based fee f on bank i's receivables

$$f \times \Lambda_i^+$$

Nominal guarantee fund

• Bank i's nominal share in the guarantee fund:

$$G_i = (\Lambda_i + g_i)^+ - \Lambda_i^+$$

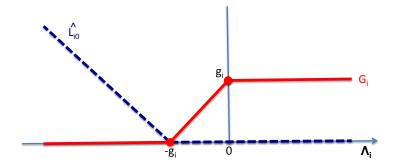


Figure: G_i and \widehat{L}_{i0} as functions of Λ_i

CCP's nominal balance sheet at t = 1

Denote $G_{\mathrm{tot}} = \sum_{i=1}^m G_i$ total nominal value of guarantee fund

- Assets: $\gamma_0 + \sum_{i=1}^m g_i + \sum_{i=1}^m \widehat{L}_{i0}$,
- Liabilities: $\widehat{L}_0 + G_{\text{tot}} + \text{nominal net worth } (\gamma_0 + \sum_{i=1}^m f \Lambda_i^+).$

Liability clearing equilibrium

• Fraction of external assets liquidated $(\widehat{L}_{i0} \times \widehat{L}_{0i} = 0)$

$$\widehat{Z}_{i} = \frac{\left(\gamma_{i} - g_{i} - \widehat{L}_{i0}\right)^{-}}{P_{i}} \wedge 1$$

Clearing payment of bank i to CCP

$$\widehat{L}_{i}^{*} = \widehat{L}_{i0} \wedge (\gamma_{i} - g_{i} + P_{i})$$

Value of CCP's total assets become

$$\widehat{A}_0 = \gamma_0 + \sum_{i=1}^m g_i + \sum_{i=1}^m \widehat{L}_i^*$$

Clearing payment of CCP

$$\widehat{L}_0^* = \widehat{L}_0 \wedge \widehat{A}_0$$

Bank i receives (proportionality rule)

$$\widehat{L}_{0i}^* = \frac{\widehat{L}_{0i}}{\widehat{L}_0} \times \widehat{L}_0^*$$

Liquidation of the guarantee fund at t = 2

Guarantee fund = first layer, prior to nominal net worth

$$G_{ ext{tot}}^* = G_{ ext{tot}} \wedge \left(\widehat{A}_0 - \widehat{L}_0^* - \gamma_0 - \sum_{i=1}^m f \Lambda_i^+ \right)^+$$

Bank i receives (proportionality rule)

$$G_i^* = rac{G_i}{G_{
m tot}} imes G_{
m tot}^*$$

Terminal net worth

CCP

$$\widehat{C}_0 = \widehat{A}_0 - \widehat{L}_0 - G_{\mathrm{tot}}^*$$

Bank i's assets

$$\widehat{A}_i = \gamma_i + \widehat{Z}_i P_i + (1 - \widehat{Z}_i) Q_i + \frac{\widehat{L}_{0i}}{\widehat{L}_0} \times \widehat{L}_0^* + G_i^* - g_i$$

Bank i's net worth

$$\widehat{C}_i = \widehat{A}_i - \widehat{L}_{i0}$$

Shortfall of CCP and banks becomes

$$\widehat{C}_i^- = \widehat{L}_i - \widehat{L}_i^*$$

Aggregate surplus identity with CCP

Lemma: The aggregate surplus with CCP depends on clearing mechanism only through implied liquidation losses:

$$\sum_{i=0}^{m} \widehat{C}_{i}^{+} = \sum_{i=0}^{m} \gamma_{i} + \sum_{i=1}^{m} Q_{i} - \sum_{i=1}^{m} \widehat{Z}_{i}(Q_{i} - P_{i}).$$

Outline

- Financial network
- 2 Central counterparty clearing
- 3 Ex post effects of central counterpary clearing
- 4 Systemic risk and incentive compatibility
- Simulation study

Independence from fee and guarantee fund policy

Write
$$\mathbf{g} = (g_1, \dots, g_m)$$
.

Lemma:

- Number of liquidated assets \widehat{Z}_i does not depend on (f, \mathbf{g})
- Shortfall of bank i does not depend on (f, \mathbf{g})

$$\widehat{C}_{i}^{-} = (\Lambda_{i} + P_{i} + \gamma_{i})^{-}$$

• Aggregate surplus dos not depend on (f, g)

Scope

- Compare financial network with and without CCP
- Convention: For comparison we set

$$C_0 = \gamma_0$$

CCP ex post effects

Theorem:

The CCP reduces

- liquidation losses $\widehat{Z}_i \leq Z_i$
- ullet bank shortfalls (bankruptcy cost) $\widehat{C}_i^- \leq C_i^-$

The CCP improves

- aggregate terminal bank net worth $\sum_{i=1}^m \widehat{C}_i \geq \sum_{i=1}^m C_i$
- aggregate surplus

$$\sum_{i=0}^{m} \widehat{C}_{i}^{+} = \sum_{i=0}^{m} C_{i}^{+} + \underbrace{(Q_{i} - P_{i}) \sum_{i=1}^{m} (Z_{i} - \widehat{Z}_{i})}_{\geq 0}$$

The CCP imposes shortfall risk $\widehat{C}_0^- \geq 0$

CCP impact on banks' net worth decomposition

Theorem: Difference in net worth of bank *i* is decomposed in

$$\widehat{C}_i - C_i = T_1 + T_2 + T_3$$

corresponding to

counterparty default:

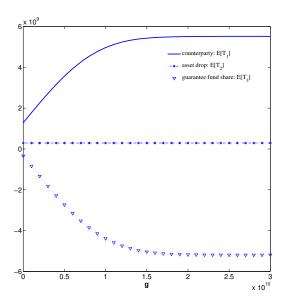
$$T_1 = -rac{\Lambda_i^+}{\sum_{i=1}^m \Lambda_i^+} \widehat{C}_0^- + \sum_{j=1}^m (L_{ji} - L_{ji}^*)$$

• liquidation loss:

$$T_2 = (Z_i - \widehat{Z}_i)(Q_i - P_i) \ge 0$$

• fees and losses in guarantee fund:

$$T_3 = -f\Lambda_i^+ - \frac{G_i}{G_{\mathrm{tot}}} \left(G_{\mathrm{tot}} - G_{\mathrm{tot}}^* \right) \le 0$$



Outline

- Financial network
- 2 Central counterparty clearing
- 3 Ex post effects of central counterpary clearing
- Systemic risk and incentive compatibility
- Simulation study

Systemic risk measure

- Write $\mathbf{C} = (C_0, \dots, C_m)$ and $\widehat{\mathbf{C}} = (\widehat{C}_0, \dots, \widehat{C}_m)$
- Generic coherent risk measure $\rho(X)$
- Aggregation function, $\alpha \in [1/2, 1]$,

$$A_{\alpha}(\mathbf{C}) = \underbrace{\alpha \sum_{i=0}^{m} C_{i}^{-}}_{\text{bankruptcy cost}} - \underbrace{(1-\alpha) \sum_{i=0}^{m} C_{i}^{+}}_{\text{tax benefits}}$$

Systemic risk measure (Chen, Iyengar, and Moallemi 2013)

$$\mathcal{R}(\mathbf{C}) = \rho\left(A_{\alpha}(\mathbf{C})\right)$$

Impact on aggregation function

Lemma:

$$A_{\alpha}(\widehat{\boldsymbol{C}}) - A_{\alpha}(\boldsymbol{C}) = \alpha \widehat{C}_{0}^{-} - \Delta_{\alpha}$$

where

$$\Delta_{\alpha} = \alpha \sum_{i=1}^{m} \left(C_{i}^{-} - \widehat{C}_{i}^{-} \right) + (1 - \alpha)(Q - P) \sum_{i=1}^{m} \left(Z_{i} - \widehat{Z}_{i} \right)$$

is nonnegative, $\Delta_{\alpha} \geq 0$, and does not depend on (f, \mathbf{g}) . Hence

$$\mathcal{R}(\widehat{\boldsymbol{C}}) - \mathcal{R}(\boldsymbol{C}) = \rho \left(A_{\alpha}(\widehat{\boldsymbol{C}}) \right) - \rho \left(A_{\alpha}(\boldsymbol{C}) \right) \le \rho \left(A_{\alpha}(\widehat{\boldsymbol{C}}) - A_{\alpha}(\boldsymbol{C}) \right)$$
$$\le \alpha \rho \left(\widehat{C}_{0}^{-} \right) + \rho (-\Delta_{\alpha})$$

with equlity if $\rho(X) = \mathbb{E}[X]$.

Systemic risk reduction

Theorem: The CCP reduces systemic risk, $\mathcal{R}(\widehat{\boldsymbol{C}}) < \mathcal{R}(\boldsymbol{C})$, if

$$\underbrace{\alpha\rho\left(\widehat{C}_{0}^{-}\right)}_{\text{shortfall risk of CCP}} < \underbrace{-\rho\left(-\Delta_{\alpha}\right)}_{\text{risk-adjusted value of }\Delta_{\alpha}}$$

where

$$\Delta_{\alpha} = \alpha \underbrace{\sum_{i=1}^{m} \left(C_{i}^{-} - \widehat{C}_{i}^{-} \right)}_{\text{cost of intermediation}} + (1 - \alpha) \underbrace{\sum_{i=1}^{m} \left(Z_{i} - \widehat{Z}_{i} \right) \left(Q_{i} - P_{i} \right)}_{\text{mitigation on liquidation losses}} \ge 0$$

does not depend on (f, \mathbf{g}) .

¹if and only if for $\rho(X) = \mathbb{E}[X]$

Acceptable equity, fee, and guarantee fund policies

- CCP and banks are risk neutral
- Utility function = expected surplus $\mathbb{E}\left[C_i^+\right]$
- Policy $(\gamma_0, f, \mathbf{g})$ is incentive compatible if

$$\mathbb{E}\left[\widehat{C}_{i}^{+}\right] \geq \mathbb{E}\left[C_{i}^{+}\right] \quad \forall i = 0 \dots m.$$

• Policy $(\gamma_0, f, \mathbf{g})$ is acceptable if incentive compatible and

$$\mathcal{R}(\widehat{\boldsymbol{C}}) \leq \mathcal{R}(\boldsymbol{C})$$

Symmetric case

Assumption: $\gamma_i \equiv \gamma$, $g_i \equiv g$, and

$$(Q_i, P_i, \{L_{ij}\}_{j=1...m}, \{L_{ji}\}_{j=1...m}), \quad i = 1...m$$

is exchangeable.

Theorem:

• Policy $(\gamma_0, f, \mathbf{g})$ incentive compatible if and only if

$$\gamma_0 \leq \mathbb{E}\left[\widehat{C_0}^+\right] \leq \gamma_0 + \sum_{i=1}^m \mathbb{E}\left[\left(Z_i - \widehat{Z}_i\right)(Q_i - P_i)\right]$$

- Existence theorem for acceptable policies
- Every acceptable policy is Pareto optimal

Outline

- 1 Financial network
- Central counterparty clearing
- Ex post effects of central counterpary clearing
- 4 Systemic risk and incentive compatibility
- Simulation study

Parameters

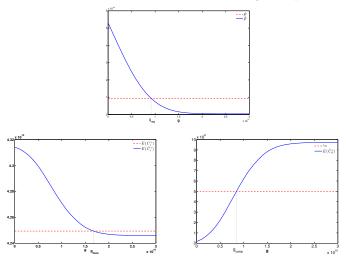
- Symmetric CDS inter dealer network based on BIS 2010 data
- gross market value W = \$1tn
- m = 14 banks
- $\gamma_i = \gamma = \$10bn$
- $Q_i = Q = \$11bn, P_i = Q_i/2$
- CCP: $\gamma_0 = \$5bn$, fee f = 2% ($\approx 1bp$ of notional)
- Systemic risk measure $\mathcal{R}(\mathbf{C}) = \mathbb{E}\left[A_{0.9}(\mathbf{C})\right]$
- Model:

$$W = \sum_{i \neq j} \mathbb{E}[|X_{ij}|], \quad X_{ij} \text{ i.i.d. } N(0, \sigma)$$

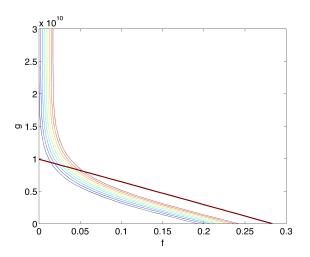
 $L_{ij} = (|X_{ij}| - |X_{ji}|)^+$

Systemic risk, banks' and CCP utility as functions of g

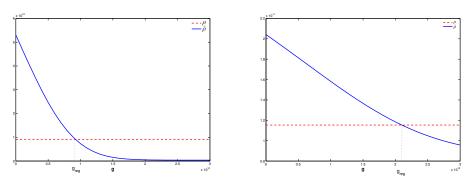
 \exists acceptable and incentive compatible policies: $g_{
m reg}, g_{
m comp} < g_{
m mon}$



Incentive compatible utility indifference curves and systemic risk zero line in (f,g)

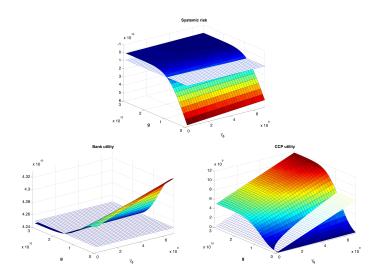


Systemic risk as functions of g for m = 14 vs. 10 banks



 $g_{\rm reg}$ doubles: concentration risk matters!

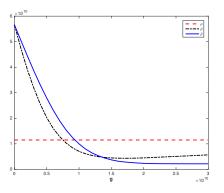
Systemic risk, banks' and CCP utility as functions of ${\it g}, \gamma_0$

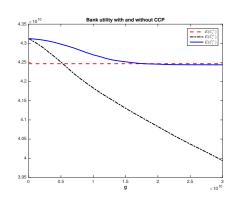


Hybrid vs. pure (default) guarantee fund

Pure guarantee fund: not netted agains liabilities, $\overline{L}_{i0} = \Lambda_i^-$.

Assets remaining with bank i, $\gamma_i - g_i + P_i$, form margin fund.





Systemic risk improvement is limited, while banks have no incentive compatibility: $g_{\rm mon} < g_{\rm reg}$.

Conclusion

- General financial network setup with and without CCP
- CCP improves aggregate surplus due to lower liquidation losses
- CCP reduces banks' bankruptcy cost
- CCP introduces tail risk, and may increase systemic risk
- Find exact condition for systemic risk reduction
- Simulation study illustrates range of acceptable CCP equity, fee, and guarantee fund policies
- Hybrid guarantee fund design greatly improves banks incentives to join CCP