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Abstract. The large shareholder literature examines how a large share-
holder trades off the advantage of being able to influence the boardroom
decisions of the firm, while small shareholders free ride on the outcomes,
against the extra risk entailed in large shareholdings. A large share-
holder can also profit because his ability to affect fundamentals improves
his ability to hide his private information from other informed traders
and from market makers in his stock market dealings. In a static ver-
sion of the model, the large shareholder increases the volatility of firm
fundamentals, but by adjusting his trading strategy this increase is of
the component of his private information that is unforecastable by the
market maker: he obfuscates. As a result, market liquidity falls.

I then use Fourier transform methods, including a new spectral fac-
torisation algorithm, to construct a continuous time dynamic version of
the large shareholder model. In the dynamic model, the large share-
holder does not just simply amplify the fundamental value of the firm
as in the static model: he also alters the fundamental autoregressive
structure of the fundamental value process because this improves his
ability to hide his private information from other informed traders and
from market makers, that is, to obfuscate. As a consequence, the real
fundamental processes of the firm are induced to resemble noise trade
structurally. The model thus marries market microstructure outcomes
with real resource allocation.

1. Introduction

Globalstar is a satellite communications company that has a fleet of 48
satellites in low earth orbit. The satellites are operationally similar to mov-
ing cell phone towers: they field signals from ground-based phones and other
devices and redirect the signals to ground stations where they are forwarded
to other phones or to the internet. The company’s niche is the absence of
lags in the signals because the satellites are close to the ground, in contrast
with companies that operate satellites in geostationary orbit.

The company’s enterprise value is approximately three billion dollars as
of this writing, and it is publicly traded, but it is 57 per cent owned by
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insiders. The dominant one by far is Jay Monroe; Monroe’s ownership flows
mostly through a hedge fund, Thermo Capital, that he owns and controls.
Monroe is both the CEO and the chairman of the board of Globalstar.

Monroe is privy to information about the firm that outside shareholders
do not have, and is able to act on that information by altering decisions
about products, production, personnel and myriad other matters—and can
keep these decisions from the view of outside shareholders. Should Global-
star, which is in the main a satellite communications company, enter a new
market, say to sell spectrum that it owns for satellite communication, that
would compete against other companies that are in the private network busi-
ness? Monroe would have inside knowledge, and could approve that entry
or not—and also trade on that information.

Monroe does in fact trade shares in Globastar. (Because he is officially an
insider, he is required to disclose these trades after two business days, but
they are carried out confidentially at the time of execution.1 2) Monroe’s
trades, and trading-related activity such as debt financing and acquisition
negotiations that are initially carried on in secret, affect the market price
of Globalstar. Knowing that he is a large shareholder, it is incumbent on
Monroe to temper not only his trading but also his business decisions within
Globalstar.

The perspective of the existing literature is that by being a large share-
holder in Globalstar, Monroe faces risks that can be potentially deleterious

1This is similar in intent to the requirement for large shareholders to report their trades
within the 60 days leading up to filing their acquisition of a five per cent or greater fraction
of a company’s shares, with filing required within ten days of the acquisition. See [14].

2Monroe is also officially enjoined from trading on “material information,” that is, inside
information about the firm. But it is equally important to note that Monroe’s activities
to alter the fundamentals of the firm are not prohibited, nor are back door trades such as
option execution, the acquisition or discharge of debt, the size of dividends, or decisions on
the issuance of new shares. Indeed the large shareholder literature by its very character
presumes that large shareholders are privy to private inside information, otherwise the
large shareholder could not benefit from his actions, and small shareholders would have
no grounds for free riding on his actions—but the literature (such as DeMarzo and Uroševic
[18]) does not explicitly model information in the large shareholder’s problem.

An exception is Collin-Dufresne and Fos [14]: they have activist shareholder paying a
cost C(ω) where ω is effort to affect the terminal value of the firm. Mechanically, this effort
increases the mean payoff directly rather than the variance. In addition, the market only
has a noisy signal of the activist’s initial holding X0. One could thus view this as “material
information.” In any case, the insider is in fact allowed to trade on his information, and
his effort comes only after he has accumulated his position at T .

The entire Kyle model and also the Glosten-Milgrom literature presumes that the
insider does in fact have material information, but never really discusses the channel
through which it is acquired. Similarly, the DeMarzo and Uroševic [18] paper does not
really grapple with the material information issue.

When one considers that there are about 4,000 US publicly traded firms, each of which
has many employees with material information, versus about 4,200 employees in the SEC
only a few of whom are attorneys and who deal with myriad issues besides insider trading,
the conclusion that insider trading in some dimension is common seems ineluctable.
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to him,3 but his ability to monitor the firm and make production decisions
can enable him to appropriately minimize those risks. Smaller shareholders
might benefit from his incentives and receive lower returns in exchange for
the monitoring incentive—that is, they might free ride: key papers include
Admati, Pfleiderer and Zechner [1], Shleifer and Vishny [32], and De Marzo
and Uroševic [18].

Monroe’s possession of private information about the underlying funda-
mentals of the firm suggests an alternative view: that he will attempt to
use that information in trading. The thrust of this paper is that the com-
bination of large shareholder status and Monroe’s interest in trading on his
private information will lead him to actually alter the fundamentals of the
firm, and in a way that rests fundamentally on a deep property of the Kyle
model.

In pure trading models where informed large traders cannot affect firm
value but do have private information as with the descendants of the stan-
dard Kyle [28] model such as Back [3], Back, Cao and Willard [5], Holden
and Subrahmanyam [25], and Foster and Viswanathan [21], and also Kyle’s
1989 paper [29], information is used by the market makers and by the in-
formed rivals from current or past prices to impute the information of the
informed traders. The informed traders know this, and attempt to trade
on the part of their private signals that is unforecastable using public price
information. As a result, total order flow looks like noise trade order flow;
the informed traders hide behind the noise traders. The informed trades
are thus inconspicuous. This inconspicuousness appears in other studies:
Danilova [15], who coined the term, and Back and Baruch [4], each using
very different technical frameworks, find this result.

As in other versions of the Kyle model, the expected profit of the informed
trader is proportional to the product of the volatility of the fundamental
value and the volatility of the noise trade. If the informed trader is also a
large shareholder, he can affect the fundamental value of the stock by his
actions, and so he can affect that profit by increasing the volatility of the
value. That strategy emerges here.

What is key is that the amplification is not merely the enlargement of the
variance of the fundamental. In a static version of the model, the large share-
holder increases the volatility of firm fundamentals in this way, but because
he simultaneously adjusts his trading strategy, from the market maker’s
perspective the increase in volatility is of the component of his private in-
formation that cannot be forecasted by market makers—the inconspicuous
part of his trades. Thus, he obfuscates.

In reality, the shocks that impinge on firm value are dynamic. Inconspic-
uousness still emerges as a strategy: privately informed traders alter the
dynamic (i.e. autoregressive) structure of their trades so that total order

3Assuming that due to contractual or practical strictures he cannot diversify and bal-
ance his portfolio appropriately.
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flow has the same dynamic structure as noise trade. But in addition, the
large shareholder can affect the underlying fundamental value of the firm not
only in the conventional static sense, he can affect the dynamic structure of
the value, that is, its autoregressive structure. He can profit by altering this
structure, because this improves his ability to hide his private information
from other informed traders and from market makers. The large shareholder
now not only increases volatility, he alters the serial correlation structure of
the firm’s fundamental value process.

Altering the fundamentals distorts in the allocation of resources in the real
activities of firms. Thus, the view that stock markets operate to allocate
capital to firms is far too simplistic: markets fundamentally alter firms.

Outline. That the large shareholder alters the time series structure of the
fundamental is the central result of the paper. The result is highlighted
in two ways: first, with a proof that pure amplification of the underlying
fundamentals is suboptimal, and second, with a numerical characterization
of how the time series structure is actually altered.

To lay the groundwork for these results I first briefly review the literature
on the volatility impact of managerial and shareholder incentives on firm
value volatility. I then set out a static model with the ingredients of the
basic Kyle (1985) [28] model: stocks, informed traders, market makers and
noise traders, but with the additional feature that the the informed trader
is also a large shareholder who can affect the fundamental value of the first
stock via a costly action.

By adding the additional feature that the informed traders base their
trades not just on their private signal but also on the price, the model
becomes equivalent to the Kyle (1989) [29] setting. This is because with an
assumed Gaussian distribution of the fundamental value of the firm and also
Gaussian noise traders, the inherent quadratic objectives of the informed
traders and the market makers leads to linear demand curves. Because they
are linear one can completely solve for them in close form by finding their
intercept and slope coefficients.

This equivalence carries over to the the dynamic model. Now the intercept
and slope coefficients apply to histories of private signals and histories of
prices, and so they effectively become functions that can be found using
fixed point methods. Moreover, the fixed points of these functions can be
interpreted in terms of time series properties such as persistence that in turn
have economic meaning; more standard approaches aren’t able to generate
these interpretations.

To find these functions I use linear operator and control theory, known
to economists as frequency domain methods, which allow a succinct char-
acterization of how endogenous dynamics are affected by incentives and by
equilibrium considerations; most of the details about the methods are in a
technical appendix, including a new algorithm for the key step of spectral
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factorization. I present a couple of basic results regarding the trading be-
havior of the informed traders, namely that in equilibrium they hide their
trades so as to be inconspicuous—a result that is fairly trivial to show in
the frequency domain setting—and I note how this relates to other mod-
eling approaches. I then add the large shareholder to the dynamic model
and demonstrate with these methods that his actions will alter the dynamic
structure—that is, the time series or autoregressive structure—of the firm’s
fundamentals.

The solution strategy of the paper can be summarized in the following
table.

Model Problem Direct → Indirect
Static Informed trader Choose market order

X conditional on pri-
vate signal and on
price, i.e. choose de-
mand as in Kyle (1989)

Linear demand sched-
ule choice: Choose in-
tercept and slope coef-
ficient

Market maker MM chooses linear
pricing rule to equal
conditional forecast of
value

MM chooses λ to min-
imize forecast error
variance

Dynamic Informed trader Choose market order
X(t) at each t condi-
tional on private signal
history and price his-
tory

Frequency domain:
Choose linear filters
on history of private
signals and price,
conditional on price
filter Λ to determine
X(t) process

Market maker MM chooses linear
pricing rule to equal
conditional forecast of
value

MM chooses Λ filter on
order flow history to
minimize norm of fore-
cast error variance

The standard approaches are summarized in the “direct” column; the meth-
ods that are used here are summarized in the “indirect” column. The models
will be set up and described in the direct fashion, but the solution is facil-
itated, especially in the dynamic model, using the indirect method. The
equivalence of these approaches has been thoroughly explored and estab-
lished in previous papers such as [33], [9] and [6].

2. Literature

The conclusion that the large shareholder will amplify the volatility of that
part of the firm’s fundamentals that he observes privately seems intuitively
reasonable: if you give a CEO options in the company stock, his incentive
is to increase the volatility of the company stock price in order to increase
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the option price.45 This has already been noted by the literature: recent
references include Camara and Henderson [12], Goldman and Slezak [22],
Peng and Roell [31], Goldstein and Guembel [23] and Bolton, Scheinkman
and Xiong [10].

Peng and Roell empirically document the increase in shareholder litigation
when managers are given option contracts as incentives. Their conclusion
is that such contracts encourage the managers to focus on short term share
prices.

Bolton, Scheinkman and Xiong develop a model in which the short term
focus of the managers when they are given such option contracts is poten-
tially desirable, because it enables them to increase the short term specu-
lative component of the share price, benefiting current shareholders. That
finding is mirrored in a sense here because the model here includes noise
traders who are the source of profit for the informed traders. Both Peng
and Roell and Bolton, Scheinkman and Xiong focus on managerial behavior,
rather than large shareholder behavior.

Goldman and Slezak develop a model in which managers can exert agency-
style effort to manipulate earnings so as to increase the value of their in-
centive pay. They conclude however that the manager’s increased effort
can actually increase shareholder welfare because the efforts are in the right
direction, that is, they improve firm value.

Goldstein and Guembel develop a model of price manipulation that is
more focused on the production side. Firm managers observe prices in the
market and make investment decisions based on those prices because they
contain information that the manager might not be able to directly observe.
Informed speculators, distinct from the managers, know this and manipulate
prices to profit from the manager’s response, rather than directly to their
own private signals. This notion is reflected in the model here: the large
shareholder observes market prices (including the prices of other stocks that
might have correlated information) and acts on that information as well as
his own.

Camara and Henderson analyze the effects of several types of incentive
contracts, and the effects of penalties and risk aversion on manager behavior.
Among other conclusions, they find that risk aversion limits the manager’s
incentive to increase firm volatility.

There is also a literature, exemplified most recently by Edmans and Manso
[20] in which large shareholders, referred to as blockholders, trade in markets
that are modeled in standard microstructure fashion, in order to impose
discipline on managers. Specifically, managers hold stock in the firm, and
firm value is positively affected by their efforts; blockholder trades reveal

4Options can be a substantial part of pay: when Meg Whitman took over Hewlett-
Packard, she was given compensation package consisting of a salary of $1 and options.

5Pay in the form of direct equity holdings also has the same properties as options due
to the limited liability aspect of equity, and this effect is of course magnified in leveraged
firms. I thank Christian Julliard for this observation.
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information about firm value and thus indirectly reward that effort. These
models are static in nature however, and so the feedback from trades into
actions that influence firm value are only indirect.

Finally, a recent paper by Collin-Dufresne and Fos, [14] has a model that
is close in some respects to the model in this paper: an activist shareholder
pays a cost C(ω) where ω is effort to affect the terminal value of the firm.
(Mechanically, this effort increases the mean payoff directly rather than the
variance.) In addition, the market only has a noisy signal of the activist’s
initial holding of the stock, so there is a private information element. The
insider trades on his information, but, unlike this paper, his effort comes
only after he has accumulated his position at the terminal time.

3. The static model

The static model is similar to the model of Bernhardt and Taub [8],
which in turn builds on the demand-schedule model of Kyle [29]. Firm
value without action by the large shareholder is

(1) v = e

where e is Gaussian N(0, σ2
e). An informed trader6 receives a zero-mean

Gaussian-distributed signal e of the value of the firm whose stock is traded.7

The informed trader can affect the value of the firm via his actions, that is,
the informed trader is also the large shareholder.

As in the standard Kyle (1985) model [28], there is a competitive market
maker who sets price conditional on total order flow, which consists of the
informed trader’s order and noise trade. The informed trader submits orders
based not only on his private information but also based on this price. As
shown in Bernhardt and Taub [6], this construct, because of the quadratic
objectives and Gaussian shocks, is equivalent to the Kyle (1989) model [29]
in which the strategy space consists of demand schedules. Because those
demand schedules are linear, this is in turn equivalent to a problem in which
the informed trader optimizes over the linear coefficients of the demand
schedules.

To analyze the model I will first set out the optimization problems of the
informed traders and then show how it can be transformed to an optimiza-
tion problem in demand schedules; the large shareholder’s optimization of
the firm fundamentals can be treated separately as a consequence of the
transformation. I then state several results about the optimization of the
firm fundamentals.

6In the literature on the Kyle model, the informed traders can also be called insiders
or speculators.

7It is straightforward to consider multiple stocks as was done in [8], but I will assume
a single stock here.
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The large shareholder. The large shareholder can be viewed as dividing his
efforts between trading activities that benefit only himself and public activ-
ities that he is required to carry out for the benefit of the firm. To enhance
his trading profits, the large shareholder chooses θ to weight his private
signal in order to alter fundamental value:

(2) v = e− θe.

Because the fundamental e is constructed to have a zero mean, it is imme-
diately evident that the influence of θ will ultimately be on the variance of
the fundamental e.

The large shareholder’s other activity is to act for the benefit of the firm,
that is, as a fiduciary. These actions can be monitored and rewarded only on
the publicly observable elements of firm fundamentals. The public funda-
mental does not enter in the valuation of the company for trading purposes
precisely because it is public.8 There is therefore a separability between the
public and private parts of the firm.

To capture the fiduciary aspect of the large shareholder within the linear-
quadratic structure of the Kyle model, the large shareholder’s actions on
behalf of the company might then be expressed as exerting effort to hit a
publicly observable target driven by a random variable η, independent of the
privately observable fundamental e. The incentive for the large shareholder
to hit the target can be represented by a penalty function

−C(η − θη)2.

with the same θ as the coefficient of the private fundamental in (2). The large
shareholder thus faces a tradeoff: his actions to alter the private fundamental
via his choice of the amplification factor θ will thus detract from his efforts
to hit the public target.

Because this penalty function does not directly interact with the pricing
part of the model, and because only the variance of η affects the optimiza-
tion, it is more tractable to express it as a simple penalty function on θ,
with the influence of the fundamental e alone:

−C(θe)2.

This simplification avoids complications that would otherwise camouflage
the main result.

Trades. As is standard there is uninformed noise trade u. The informed
trader’s trade x (whether or not he is the large shareholder) is a linear func-
tion of his private signal of value e, expressed as trading intensity coefficient
b, and of the net information in price, with intensity γ; total order flow is
the sum of informed and uninformed trades x+ u.

8That is, because they are public, market makers price elements of the firm that are
driven by public shocks perfectly, and so informed traders cannot profit by trading on
that information.
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Pricing. Market makers receive the aggregate orders from the informed
trader and from the noise traders, but are unable to distinguish individ-
ual trades. Market makers are competitive, so they construct price to be
efficient, that is, to be an optimal forecast of the value v.

I focus only on linear equilibria in which the informed trader’s trade is
linear; because the noise trade and fundamental value are Gaussian, the
optimal forecast is a linear projection. Price is thus a linear function of
order flow

p = λ (x+ u)

where λ is a projection coefficient that expresses the signal extraction that is
being carried out. The solution of linear projection is equivalent to finding
the pricing coefficient λ that minimizes the forecast error variance. 9

The large shareholder’s problem. The large shareholder’s objective is a weighted
sum of his trading profits, as enhanced by his amplification of the funda-
mental e via his choice of θ, and the minimization of the penalty from failing
to hit the public target, also via θ.

Because θ operates directly on the fundamental e, this problem is poten-
tially ill-posed: the optimal θ would then be a function of the noise trade
realization as well as the fundamental e. To avoid the ill-posedness problem
I assume that the choice of θ can be conditioned on e, but not on the direct
observation of the noise trade. The maximization then occurs in two stages:

(3) max
θ
E

[
max
x

[
(e− θe− λ (x+ u))x− C

2
(θe)2

∣∣∣∣∣(1− θ)e, p
] ∣∣∣∣∣e
]

where C is a constant penalty on the magnitude of the large shareholder’s
realized amplification θe. In the first stage, the large shareholder chooses
the optimal trading strategy x conditional on the modified fundamental,
(1− θ)e, and potentially on the noise trade, imputed via the price, if there
is only one informed trader. In the second ex ante stage he chooses the
amplification factor θ.

The indirect approach to the large shareholder’s optimization prob-
lem. To solve the optimization problem in equation (3), it is helpful to
transform the problem as outlined in the introduction. The first step is to
convert the informed trader’s trade conditioned on price to his trade condi-
tioning on the information in price.

Lemma 1. Let the informed trader’s order flow take the linear form

(4) x = b(1− θ)e+ γ(b(1− θ)e+ u)

9In fact, linearity of pricing is not immediate, but it can be shown that a linear equi-
librium exists, and this paper focuses only on this possibility. The linearity of the pricing
rule is developed in Back [3]. Further analysis of the uniqueness of linear equilibria is
presented in Boulatov, Kyle and Livdan [11], and also Bernhardt and Taub [9].
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Then the net information in price is

(5) b(1− θ)e+ u

Proof: Applying the linear pricing rule to total order flow yields the price

(6) λ(x+u) = λ(b(1− θ)e+γ(b(1− θ)e+u) +u) = λ(1 +γ)(b(1− θ)e+u)

Dividing by λ(1 + γ) yields the net information in price. 2

Correspondingly, because of the quadratic structure of the problem, it
is straightforward to show that, with the assumption of linear pricing, the
optimal x in equation (3) is a linear function of the relevant information
sources, equation (4). Given the equivalence established in Lemma 1, equa-
tion (4) is then essentially a demand schedule in the spirit of Kyle’s (1989)
model [29]. I will refer to the coefficients of that demand schedule, b and γ,
as trading intensities.

Holding θ fixed, then because the optimal x is a linear function of the
fundamentals, it is possible to demonstrate that the problem of maximizing
over x is equivalent to maximizing over the trading intensities b and γ after
taking the unconditional expectation with the assumption that x is linear;
this equivalence is demonstrated for example in Bernhardt and Taub [8],
and is briefly outlined in Appendix A. This equivalent problem is more
convenient analytically because θ can then be chosen simultaneously with b
and γ. This is the approach I will use going forward, and will be especially
key when solving the dynamic model.10

Formalizing this:

Definition 2. The large shareholder’s strategy space consists of a triple
(b, γ, θ) ∈ R3.

Expressing the trading strategies explicitly in terms of b and γ as in
equation (4), then carrying through the expectation in this way and with
the assumption that the private signals are uncorrelated, the optimization
problem for the large shareholder is

(7) max
{b,γ,θ}

{
((1− θ)− b (1 + γ)λ) (1 + γ)bσ2

e − (1 + γ)λγσ2
u −

C

2
θ2σ2

e

}
The two-stage structure is no longer needed.

A definition of equilibrium can now be stated:

Definition 3. A linear Bayesian Nash equilibrium is a tuple (b, γ, θ, λ) ∈ R4

such that

10The outlines of the equivalence can be seen by noting that the coefficients b and
γ in the informed trader’s optimal order, using the “direct” approach as expressed in
equation (4), will be functions of the linear pricing coefficient λ. Because λ is a projection
coefficient, it is a function of the variances of the fundamental and of the noise trade, σ2

e

and σ2
u, and so in equilibrium b and γ will be functions of these variances as well. In

the indirect approach the unconditional expectation renders the variances as coefficients
in the objective, and optimizing over b and γ then leads more directly to the solutions
expressed in terms of the variances. See Appendix A for a more direct demonstration.
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(i) A trading and amplification strategy consisting of a triple (b, γ, θ) ∈
R3 solves (7), conditional on the linear pricing rule λ, with infor-
mation set (e, u), and

(ii) The linear pricing rule λ minimizes the market maker’s forecast error
variance of E

[
v
∣∣b(1− θ)e+ γ(b(1− θ)e+ u) + u

]
conditional on the

informed trader’s strategy (b, γ, θ) and the information from total
order flow b(1− θ)e+ γ(b(1− θ)e+ u) + u.

3.1. The large shareholder’s first order conditions. The first-order
condition for b can be written as follows:

[((1− θ)− b (1 + γ)λ) (1 + γ)− b(1 + γ)λ (1 + γ)]σ2
e = 0

with solution

(8) b =
1

2λ(1 + γ)
(1− θ).

Thus, the large shareholder’s trading intensity on private information is
modified by his alteration of the variance of the fundamental.

The first order condition for γ is

(9) ((1− θ)− b (1 + γ)λ) bσ2

− (1 + γ)λσ2
u − (bλ) (1 + γ)bσ2

e − λγσ2
u = 0

After substituting the solution for the b and the other γ this reduces to

1

2
(1− θ) bσ2 − (1 + γ)λσ2

u − (bλ) (1 + γ)bσ2
e − λγσ2

u = 0

A further solution for γ requires the formula for the optimal pricing rule λ
which will be derived below.

The first-order condition for θ is

−(1 + γ)bσ2
1 − Cθσ2

e = 0.

with solution

(10) θ = −(1 + γ)b

C
.

The coefficient γ has the following interpretation: it is the (negative of the)
projection coefficient of the informed trader’s trade on public information
onto publicly available information, namely price; in turn, price is infor-
mationally equivalent to total order flow.11 Because γ is negative (see the
solution below), the factor 1+γ is the coefficient of the forecast error of that
projection. Thus, θ is proportional to the market maker’s forecast error co-
efficient (1 + γ) on the traded part of the large shareholder’s private signal,
b; this is the same quantity on which the informed trader’s orders are based.

11These assertions are elaborated in Bernhardt, Seiler and Taub [9] and in Seiler and
Taub [33].
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3.2. Equilibrium. To solve the model the solution of [6] can be directly
applied, with a single informed trader. To apply the model with the large
shareholder effect, I amend the notation to reflect the large shareholder’s
modification of the fundamental value of the firm. From the market maker’s
perspective that fundamental value is (1 − θ)e with variance (1 − θ)2σ2

1.
Define the modified fundamental and fundamental variance,

(11) ẽ ≡ (1− θ)e σ̃e ≡ (1− θ)σe
Using the formulas for the equilibrium quantities on page 7 of [6] (changing
to the notation of this paper, so that b is the coefficient on the private signal)
the solutions are:

(12) b =
1

2λ(1 + γ)
γ = − b2σ̃2

e

b2σ2
e + σ2

u

λ =
1

(1 + γ)

bσ̃2
e

b2σ̃2
e + σ2

u

where λ is the market maker’s linear least squares projection on order flow,
and with the second equality following because N = 1. Solving the three
equations yields the equilibrium quantities in terms of fundamentals:

(13) b =
σu
σ̃e

γ = −1

2
λ =

σ̃e
σu

3.2.1. The effect of the large shareholder. The solution for θ can now be
characterized.

Proposition 4. θ is negative, resulting in amplification of the variance of
the fundamental.

Proof: The full solution for θ is complicated because σ̃ is itself a function
of θ. Substituting from equation (13) in equation (10),

(14) θ = −
σu

(1−θ)σe
2C

yielding a quadratic in θ, with one negative solution and one positive solu-
tion. For large values of C, these solutions approach 1 and 0 respectively;
clearly the positive solution, which would reduce the variance of the funda-
mental and incur a large penalty, is suboptimal. The proof that the negative
solution is optimal is as follows. The reduced form for profit in terms of θ
can be found by substituting the solutions for b and θ into the reduced form
solution for profit in equation (13), but with the volatility altered to account
for the large shareholder’s action, as in equation (15):

π =
σ̃eσu

2
=

(1− θ)σeσu
2

There is also a penalty term in the objective for the large shareholder. The
positive solution of the quadratic equation is larger in absolute value than
the negative solution, and therefore the penalty term is larger in magnitude
(more negative) than the negative solution. Therefore the negative solution
is optimal. 2
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We can now establish that an equilibrium exists using these solutions and
also characterize it.

Corollary 5. A linear Bayesian Nash equilibrium exists.

Proof: From equation (14) in Proposition 4, the solution for θ is deter-
mined by the exogenous elements. The solution for θ then determines the
effective variance of the fundamental, σ̃e. The fundamentals σ̃e and σu then
determine the equilibrium b, γ and λ using results from Bernhardt and Taub
[6]. 2

Because θ is negative, the modified fundamental e− θe is in fact an am-
plification of the fundamental variance. But in addition, note that this term
too is proportional to the forecast error coefficient 1 + γ. Thus, the ampli-
fication is only on the unforecastable part of the fundamental, limited only
by the penalty C. I summarize the result as follows.

Proposition 6. The large shareholder amplifies the unforecastable part of
his component of the fundamental.

Proof: Using a projection algebra argument, Bernhardt and Taub ([6],
p. 11) demonstrate that the order flow x is comprised of a linear function
of the market maker’s forecast error of the informed trader i’s private signal
e. For the large shareholder, this translates to

x =
1 + γ

λ
E

[
(1− θ)e+

∣∣∣∣∣
(

(1− θ)e− E

[
(1− θ)e

∣∣∣∣∣x+ u

])]
where it should be noted that the inner expectation is conditioned on total
order flow x+ u. Factoring 1− θ out of this expression, we have

(15) x = (1− θ)1 + γ

λ̃
E

[
(1− θ)e+

∣∣∣∣∣
(
e− E

[
e

∣∣∣∣∣x+ u

])]
where λ̃ is the pricing coefficient when there is a large shareholder. By
Proposition 4, θ is negative, and so the key effect of the large shareholder
is to not only amplify the private signal, but to amplify the unforecastable
part of the signal. 2

Corollary 7. The large shareholder’s amplification of the unforecastable
part of his component of the fundamental increases his profit.

Proof: Using formula (12) from [6], profit is

(16) π = λ(1 + γ)σ2
u =

σ̃eσu
2

.

Because 1− θ exceeds unity, the large shareholder’s action serves to amplify
the fundamental value e and thus his profit. 2

Thus, the large shareholder does in fact conform to intuition: he will ef-
fectively increase the volatility of the firm’s value, and he takes advantage of
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this excess volatility in the dimension in which he receives signals in his trad-
ing. Thus, the large shareholder has a larger profit than a correspondingly
informed outsider; these profits come at the expense of the noise traders.

The increase in the effective fundamental variance increases the pricing
coefficient λ, as would be expected: the signal to noise ratio has been in-
creased. The volatility of price also increases:

E
[
(λ(1 + γ)(b(1− θ)e+ u))2

]
=
σ̃2
e

2
In addition, the forecast error variance also increases. This is not obvious a
priori, because the higher variance of the fundamental σ2

e raises the signal
to noise ratio in order flow. This would be expected to increase λ—which it
does—and thus reduce the overall forecast error variance. However, the way
the signal is amplified is via the forecast error of the signal, and intuitively
this should not improve the signal component, and this is the result.

Proposition 8. The large shareholder amplifies the market maker’s forecast
error variance.

Proof: The forecast error variance is

(17) E
[
((1− θ)e− λ(x+ u))2

]
=
σ̃2
e

2
By proposition 4 θ is negative, so the forecast error variance exceeds the
forecast error variance when there is no large shareholder. 2

The fact that the large shareholder amplifies the non-forecastable part of
his order flow—obfuscation—suggests that in a dynamic setting the large
shareholder might want to alter the time series structure of the fundamen-
tal. This conjecture is true and in the next section I set the groundwork for
demonstrating this. The method used in the static model—restricting ac-
tions to be linear functions of the information realizations, and then solving
for the coefficients of those linear polices—works in the dynamic setting as
well, but requires functional analysis tools.

4. Adding dynamics

I will now set out a dynamic version of the model using a continuous time
approach. I use the continuous-time analogue of Bernhardt, Seiler and Taub
[9] and Seiler and Taub [33] in order to carry out the dynamic analysis. The
main tools are the Laplace and Fourier transforms and the continuous-time
analogue of the Wiener-Hopf equation. These tools are described in sections
6.A (pp. 216-220), 7.1-7.2 (pp. 221-228), and 7.A (262-264) of Kailath,
Sayed and Hassibi [27]. An additional reference is Hansen and Sargent [24].

The dynamic model differs significantly from the more standard approach
exemplified by the paper of Back [3], which uses a PDE approach to solving
the dynamic Kyle model. In the original dynamic Kyle model the funda-
mental value of the firm is fixed, as is the time horizon. The only dynamic
fundamental element of the model is the noise trade, which is Brownian
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motion. Because of the fixed horizon, the behavior of the equilibrium is
strongly influenced by boundary conditions. In the model of this paper,
the firm’s fundamental is itself a dynamic process, as is the signal observed
by the informed trader. While increasing the complexity of the model in
many dimensions, it also renders it stationary. The stationary model can be
mapped to the frequency domain and then solved with essentially algebraic
methods. More concretely, the transformed model reduces the solution pro-
cess to finding functions that are the analogues of the coefficients b, γ, θ
and λ from the static model, namely B(·), Θ(·), Γ(·) and Λ(·), which are
elements of a Hilbert space. The optimization problems of the informed
traders and of the market makers can be expressed as variational problems
in the frequency domain with optimization over these functions. Because
the functions are in essence the generating functions of stochastic processes,
they have clear economic interpretations, particularly with regard to the
persistence of the processes.

In the standard market microstructure literature, the noise trade is as-
sumed to be a Brownian process so that incremental noise trades are seri-
ally uncorrelated, while there is a single realization of the underlying asset
value, as in the original Kyle model [28], or another Brownian process as in
Danilova’s recent model [15], so that information are highly persistent. By
contrast, in this paper while I maintain the assumption of a persistent value
process, I allow the degree of persistence to be a variable. This serves to
highlight the starkly different dynamic structure of order flow and prices,
differences that highlight the economic forces driving those processes.

In the next section I develop the technical elements of the dynamic model
without the large shareholder, building on previous work. The conclusions
regarding inconspicuousness are easily established in this framework. In
subsequent sections I add the large shareholder and develop the main re-
sult: that the large shareholder obfuscates not only by amplifying the non-
forecastable part of informed order flow, but by altering the fundamental of
the firm itself.

4.1. Technical preliminaries. I begin with the assumption that the total
cost of shares X(t) held by a trader at each time t is proportional to the

discounted cost of acquiring them at each instant,
∫ t

0 e
−rsp(s)x(s)ds, where

x(s)ds is the incremental shares acquired, r is the discount rate and p(t) is
the price of a share at time t.

In the standard setup of the Kyle model, the underlying value is fixed,
and is revealed at the terminal time T . There are two differences here:
first, the horizon is infinite, and so the underlying value is effectively never
revealed. Second, the value fluctuates stochastically, and meaning must be
given to this fluctuation. The interpretation will be that at each moment
there is a possibility that the firm will be bought, merged or terminate, with
some probability that is independent of past or current states and associated
hazard rate δ; I will refer to this as conversion. Should the conversion occur,
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the discounted payoff for an informed trader is

e−rtv(t)

∫ t

0
x(s)ds

where v(t) is the time-t realization of the stochastically evolving fundamental
value, and this happens with probability δe−δt. The probability-weighted
expected payoff at time t is then

E

[
e−rtδe−δtv(t)

∫ t

0
x(s)ds

∣∣∣∣ω(0)

]
where ω(t) is the trader’s information at t. Thus, the expected profit over
all dates of conversion is

E

[∫ ∞
0

e−rtδe−δtv(t)

∫ t

0
x(s) ds dt

∣∣∣∣ω(0)

]
By changing the order of integration we can write the inner terms as

(18)

∫ ∞
0

x(t)

∫ ∞
t

e−rsδe−δsv(s) ds dt

Defining the probability-discounted value of the asset at any moment as

v(t) ≡ e−δt
∫ ∞
t

δe−(δ+r)(s−t)v(s) ds

we can write equation (18) as

(19) E

[∫ ∞
0

e−rtx(t)v(t)dt

∣∣∣∣ω(0)

]
.

This then justifies writing discounted expected profit as

(20) E

[∫ ∞
0

e−rt(v(t)− p(t))x(t)dt

∣∣∣∣ω(0)

]
.

Value and noise trade process specifics. Let e(t) be the private information
process for the informed trader, who is also the large shareholder. I assume
that the process is a Gaussian, zero-mean white noise process, and it re-
mains the case that the firm value is equal to this signal. Now however, the
signal and consequently the firm value are stochastic processes. The raw or
unmodified firm value process is a filtered version of this fundamental signal
process:12

(21) v(t) =

∫ ∞
0

φ(τ)e(t− τ)dτ

It deserves emphasis that it is the probability-discounted payoff, v(t), that
is defined using these primitives, rather than the “raw” payoff v(t).

12See Appendix B for a discussion of the interpretation of white noise in continuous
time.
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It is possible to rewrite (21) as a stochastic integral, namely

(22) v(t) =

∫ ∞
0

φ(τ)dZ(t− τ)

where Z(t) is a Brownian motion, using Doob’s [19] and Hansen and Sar-
gent’s [24] stochastic integral notation. If the large shareholder modifies
the fundamental, then he would choose an additional filter θ(·) to convolve
with the v process:

(23)

∫ ∞
0

θ(τ)dv(t− τ)

so that the modified fundamental would be

(24) ṽ(t) =

∫ ∞
0

φ(τ)dZ(t− τ)−
∫ ∞
σ=0

∫ ∞
0

θ(σ)φ(τ)dZ(t− τ − σ)

Similarly, the noise trade process can be a filtered version of a fundamental
white noise process n(t):

u(t) =

∫ ∞
0

ν(τ)n(t− τ)dτ.

but it is mathematically more proper to formulate the process as a convo-
lution of Brownian increments, that is,

(25) u(t) =

∫ ∞
0

ν(τ)dN(t− τ).

where N(t) is an independent Brownian process.
Both the value and noise processes are characterized by the filters φ and

ν. For the purposes of characterizing the model it will be assumed when
necessary that the value and noise trade processes are Ornstein-Uhlenbeck
processes, that is, analogues of autoregressive processes in discrete time
settings. The filters are then in exponential form:

φ(τ) = e−ρτ ν(τ) = e−ητ .

In the limit, these processes become Brownian motions at ρ = 0 and η = 0,
and white noise processes at the limit of the other extreme, ρ = ∞ and
η = ∞. Economic intuition suggests that the value processes should be
highly predictable; similarly intuition suggests that noise trade should not
be persistent. To keep the model tractable I will assume that noise trade
is white noise (η = ∞), but that the value process can have any degree of
persistence, characterized by 0 ≤ ρ <∞.

Using the continuous time transform as described in Kailath, Sayed and
Hassibi [27] p. 217, and also in Appendix C, the s-transforms of the filters
for the value and noise trade processes are then Φ = 1

s+ρ , which is the

transform of an Ornstein-Uhlenbeck process (see Davis [17] p. 80), and the
identity matrix I respectively (again, see Davis [17] p. 80).



18 BART TAUB

4.2. Order flow and public information. Before carrying out the full
transformation of the objective to the frequency domain, it will be helpful
to convert the expression of the large shareholder’s trade from demand sub-
mission form as in Lemma 1, in which the large shareholder reacts directly
to price, to an equivalent one in which the large shareholder bases his trade
on the public information inherent in price. To keep the argument simple
I will temporarily drop θ, the large shareholder’s modification of the fun-
damental from the notation: the large shareholder will be treated as if he
were a conventional informed trader, and I also temporarily drop the filter
on the fundamental process, φ.

Let Ω(t) be the public information process, which is going to be equivalent
to the information in price.13 In keeping with the assumption of linear
strategies as in the static model, the informed trader’s trading strategy
process is restricted to be a linear filtering of the histories of these processes:

x(t) =

∫ ∞
τ=0

(bω(τ)dZ(t− τ) + bΩ(τ)Ω(t− τ)dτ).

Moreover, the linear filters bω(·) and bΩ(·) that constitute the trading strat-
egy are assumed to be fixed, that is, they are independent of time. As with
the static model, the filters, including that for the large shareholder, are
assumed to operate directly on the fundamental processes; the impact of
the large shareholder is felt via the value process and its impact on price.

The trading strategy filters chosen by the informed trader or large share-
holder are elements of the space of square-integrable functions, taking ac-
count of discounting:

(26) L2(r) ≡
{
f(·) :

∣∣∣ ∫ ∞
0

e−rt |f(t)|2 <∞
}

However, the focus will not be on the objective with this choice set, but
rather elements of the transformed objective and control filters, which I will
detail later.

In addition, noise traders exogenously submit an order flow process u(t).
Adding up the informed and noise trade yields total order flow:

(27) x(t) + u(t) =

(∫ ∞
τ=0

(bω(τ)dZ(t− τ) + bΩ(τ)Ω(t− τ)dτ)

)
+ u(t).

Defining the left hand side of (27) as Ω(t), we have the recursion

(28) Ω(t) =

∫ ∞
τ=0

bω(τ)dZ(t− τ) +

∫ ∞
τ=0

bΩ(τ)Ω(t− τ)dτ + u(t).

Ω(t) is a stochastic process that also defines the market maker’s information
process. It will be key for the further analysis to express this information
process in modified form.

13In the sequel it will be understood that the information is expressed as a filtration
Ft that is adapted to Ω(t), but because the transform methods that will later facilitate
the solution will operate on Ω(t), this will be the focus from now on.
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The right hand side of the Ω(t) process in equation (28) is a convolution
as described in Kailath, Sayed and Hassibi [27] p. 217, but the integration
is one-sided. However, if it is known in advance that the functions bω and
bΩ are one-sided, the integral can be converted to two-sided form and obtain
the Laplace transform of the equation.14

Following Kailath, Sayed and Hassibi’s convention of using capital letters
for the Laplace transform, the transform of equation (28) is:

O(s) = B(s)e(s) +BΩ(s)O(s) + U(s).

where B(s) is the transform of bω (see pp. 216-217 of [27]). The convolutions
have been converted into products as a result of the transform. With this
transformation, it is now possible to solve for O(s) with straightforward
algebra. This yields

(29) O(s) = (1−BΩ(s))−1 (B(s)e(s) + U(s))

The solution approach used in Bernhardt et al [9] can now be followed:
define γ as the filter characterized by the transform

(30) Γ(s) = (1−BΩ(s))−1BΩ(s)

and then substituting from equation (28) into the order flow equation (27)
and using (29) and (30), the order flow process becomes

(31) x(t) =

∫ ∞
τ=0

bω(τ)dZ(t− τ)

+

∫ ∞
τ=0

γ(τ)

(∫ ∞
σ=0

bω(σ)dZ(t− τ − σ) + u(t− τ)

)
dτ

The bracketed term can then be viewed as the public information process
inherent in the price process.

Maintaining the assumption of linear pricing, the price process is deter-
mined by a linear filter λ, with transform Λ, applied to total order flow:15

(32) p(t) =

∫ ∞
0

λ(τ)

[∫ ∞
σ=0

∫ ∞
ν=0

bω(σ) (1 + γ(ν)) dZ(t− ν − σ − τ)dσ

+

∫ ∞
ν=0

γ(ν)u(t− ν − τ)dν

]
dτ

These ingredients will now be combined to form the objective for the in-
formed traders.

14See a further elaboration of the technical details of this transform in Appendix B.
15Again, it should be noted that the linearity of the price process here is an assumption;

as previously noted the validity of this assumption for existence has been explored in
previous papers such as [9]; the necessity of linear pricing in the standard Kyle model was
established in [3].
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4.3. The informed trader’s objective. Resuming the explicit incorpora-
tion of θ(·) and φ(·), and expressing the informed trader’s actions in terms
of the filters expressing the value process in equation (21), the price pro-
cess in (32), and the order flow process from (31) which includes the public
information process, we can write the time-domain objective (20) for the
large-shareholder informed trader as

max
{bω(·),γ(·),θ(·)}

E

∫ ∞
0

e−rt

(∫ ∞
τ=0

φ(τ)dZ(t− τ)−
∫ ∞
τ=0

∫ ∞
σ=0

φ(τ)θ(σ)dZ(t− τ − σ)

(33)

−
∫ ∞
τ=0

λ(τ)

[∫ ∞
σ=0

∫ ∞
ν=0

bω(σ) (1 + γ(ν)) dZ(t− ν − σ − τ)dσ

+

∫ ∞
ν=0

γ(ν)u(t− ν − τ)dν

]
dτ

)

×
(∫ ∞

τ=0
bω(τ)dZ(t− τ) +

∫ ∞
τ=0

γ(τ)

(∫ ∞
σ=0

bω(σ)dZ(t− τ − σ) + u(t− τ)

)
dτ

)
dt

where bω(·) and γ(·) are elements of the space of exponentially bounded
functions that are analytic and square integrable, that is, they are in L2

+(r)
in Hansen and Sargent’s notation ([24]), with the integration adjusted for
discounting, and with the optimization over the filters directly rather than
over informed order flow x. With these elements in place, it is possible to
state a preliminary definition of equilibrium:

Definition 9. An linear equilibrium is a quadruple (bω(·), γ(·), θ(·), λ(·))
elements of L2(r) such that

(i) The functions (bω(·), γ(·), θ(·)) solve the informed trader/large share-
holder’s optimization problem (33) taking as given λ(·) with infor-
mation ((e(t− s), u(t− s))∞s=0 for all t, and

(ii) The filter λ(·) in the market maker’s pricing rule in (32) is the con-
ditional forecast of the value process at every time t, taking as given
the informed trader’s trading rules (bω(·), γ(·), θ(·)).

The objective in (33) is nontrivial, because the choice of the optimal
action each period is conditioned on information, which includes the his-
tory of endogenous actions, and similarly the pricing rule in (32) is a fairly
complicated object. As in the static model in which the solution could be
approached by first taking the expectation of the fundamentals and then
seeking solutions of the optimal coefficients, the solution of the dynamic
model is more straightforward if the objective is first converted to frequency
domain form, with the choice variables converted from time-domain period-
by-period actions to the choice of optimal Laplace transformed filters in the
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frequency domain.16 I next develop the recipe for converting the objective
to frequency domain form.

At this point that the assumption that the choice objects bω, γ and so
on, are restricted to be linear filters, means that the equilibrium, if it exists,
will be a linear equilibrium. While the uniqueness of the equilibria in the
Kyle model has long been a subject of exploration in the literature, I am
imposing this linear structure as an assumption.

Once the conversion to the frequency domain occurs, the optimal filters
are found by solving a static variational problem. It deserves emphasis that
in the original time-domain statement of the informed trader’s objective and
the market maker’s filtering problem, it is at least conceptually possible for
the optimal filters bω, γ and so on to be nonstationary functions of time, that
is at each time t the informed trader would choose filters bω(t, ·) 6= bω(s, ·)
for s 6= t. However, because the problem is time-separable with linear
constraints and a quadratic objective, this will not be the case: the optimal
filters will be stationary. This in turn means that the frequency domain
version of the model in which the optimal filters are chosen directly also
solves the time-domain version of the model.

5. Optimizing in the frequency domain

Whiteman [36] constructed a discrete time model and then converted
the objective itself into z-transform form. The optimization was then over
linear operators or filters that were found via a variational derivative of
the transformed objective.17 This was achieved by imposing the constraint
that the controls must be a linear filter of the information, and taking the
expectation of the objective prior to optimizing over those filters; this is
the extension of the similar operation that was carried out in going from
equation (3) to equation (7) in the static model. However, it is essential
to reduce the covariance function of the fundamental processes—the white
noise fundamentals—to a scalar covariance matrix. In continuous time, the
equivalent operation is to make the fundamental covariance function Rx(t)
a Dirac δ-function.18

If the fundamental processes are serially uncorrelated, as is the case here
by the assumption that the fundamental processes are white noise, then the
expectation of an objective like (33) leaves an integral in which the integrand
consists of products of functions. Fourier transforming these objects then
yields a convolution in the frequency domain, and the variational derivative
of these convolutions can then be calculated. Proceeding in this way with
abstract functions f and g,

(34)

∫ ∞
0

e−rtf(t)g(t)dt =

∫ a+i∞

a−i∞
F (s)G∗(r − s∗)ds

16The equivalence of these formulations was explored in [9].
17An earlier instance of the method is in Davenport and Root [16].
18Again, see Davis [17], pp. 80-81.
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where the notationG∗ signifies the complex conjugate transpose ofG, G∗(r−
s∗).19 The r − s∗ term captures discounting, and where the integration is
along a strip parallel to the imaginary axis in which Re(s) = a, where the
functions F and G are analytic in the right half plane—that is, F and G have
no poles or singularities in the region Re(s) > −r, and with a small enough
to avoid poles and thus yield convergence, that is, a < r.20 There are two
parts to the integrand: the “causal” part F (s) and the “anti-causal part”
G∗(r − s∗), reflecting the inner product that is expressed in the objective.

The right hand side of (34) defines an inner product; formally, define

Definition 10. H2 is the set of square integrable functions on the right half
plane with inner product defined in (34) such that

H2(r) =

{
F :

∫ a+i∞

a−i∞
F (s)F ∗(r − s∗)ds <∞

}
.

I will seek equilibria consisting of functions from this space.

5.1. The large shareholder’s problem. In the static model, the market
maker views the modified fundamental (1− θ)e as indistinguishable from a
“raw” fundamental; similarly, the large shareholder solved for the optimal
signal intensity coefficient b and the price information intensity coefficient
γ by treating the modified fundamental as a raw fundamental; the choice
of the amplification coefficient could then be developed subsequently. This
same strategy works in the dynamic model.

The large shareholder chooses the filter θ(·) on his private signal in order
to alter fundamental value:

vt =

∫ ∞
0

φ(τ)dZ(t− τ)−
∫ ∞

0

∫ ∞
0

θ(σ)φ(τ)dZ(t− τ − σ)dσ

There are no intrinsic restrictions on the filter, other than that it must by
analytic, i.e., it can be backward looking but not forward looking. Thus,
the filter can be designed so that the stochastic structure in the underly-
ing shocks is altered to be more or less persistent, and to have additional
structure such as zeroes that make the price process noninvertible in some
appropriate sense.

The penalty on the large shareholder’s action is

(35) E

[(
C1/2

∫ ∞
0

∫ ∞
0

θ(σ)φ(τ)dZ(t− τ − σ)dσ

)2
]
,

that is, the amplification is treated as a penalty process. The motivation
for this penalty is the same is in the static model: one can think of the
large shareholder as having a responsibility to hit stochastic targets that are

19For a concrete example in which this integration is calculated, see the proof of Lemma
15 in Appendix D.

20Notice that as in the discrete time case discounting weakens the constraints on poles.
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public, as well as being interested in altering the privately observed funda-
mentals for the purpose of making trading profits. As in the static model,
the essential features of the target-hitting formulation can be captured by a
penalty formulation.21

Applying the transform method to the informed trader’s problem, the
transformed objective will be a function of the value process filter Φ(s), the
public information process filter O(s), the modification of the fundamental
Θ(s), the pricing filter Λ(s), and the informed trader’s order flow X(s). The
transform of the objective (33) is then

(36) max
X,Θ

∫ a+i∞

a−i∞
tr
(

Φ(s)−Θ(s)Φ(s))− Λ(s)O(s))X∗(r − s∗)R

− C

2
Θ(s)Φ(s)Φ∗(r − s∗)Θ∗(r − s∗)

)
ds

where O is the transform of the total order flow process from equation (29),
and where Φ(s) is the (vector) value process Laplace transform, the valuation
process reflects the action of the large shareholder, with Θ(·) the transform
of θ(·). Because I solve the model using the indirect approach—that is,
taking expectations on the assumption of linearity and then solving for the
optimal filters—it is appropriate to simultaneously solve for X and Θ.

The internal pieces of X and Φ, Λ, and O can now be broken out. The
causal and anti-causal pieces (Φ − ΛO and X∗ respectively) are such that
the Fourier transform of a sum is the sum of the Fourier transforms. The
convolution of functions of the s operator translates into multiplication of
functions in the s-domain: let g(t) =

∫∞
0 h(τ)m(t − τ)dτ , and consider the

Fourier transform of
∫∞

0 f(σ)g(t− σ)dσ. Then it is immediate that

(37) F (s)G(s) = F (s)(H(s)M(s)).

Thus, the double integration in equation (35)) is an iterated convolution,
and thus the transform results in an iterated product Θ(s)Φ(s); see the
discussion surrounding equation (37).

With this result in hand one can write the Fourier transformed objective
(36) with the explicit decomposition of the price process. Also, B(s) is the
Fourier transform of the filter bω(t); Γ(s) is the Fourier transform of γ(t),
and H is the Fourier transform of 1 + γ(t), so that

(38) H(s) = 1 + Γ(s).

With these ingredients the large shareholder-informed trader’s transformed
order flow filters are a vector of transforms

(39)
(
B(1 + Γ) Γ

)
21In fact this is potentially a bit more complicated. In the dynamic setting, the filter

associated with the public target process is added to the forecast error filter in the first
order condition for θ. That in turn potentially complicates the solution of θ. The compli-
cation has been avoided here by in essence assuming that the public target is a constant,
zero, yielding the penalty function used in the main text.
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with each element corresponding to the filters operating on the fundamental
process e(t) and on the noise trade fundamental u(t) via the public informa-
tion process; the extra term in the first element adds the informed trader’s
direct operation on his own signal. Similarly, the price process transform
consists of the elements

Λ
(
BH H

)
operating on the individual fundamental process e(t) and the noise trade
process u(t), and where the total order flow by all agents is captured by
adding up the individual transforms in (39) and using the compact notation
in (38). Finally, Φ is the Fourier transform of the raw unmodified firm value
process process that the informed trader/large shareholder sees in his signal,
and which is the value process of the stock.

Combining these ingredients yields the s-transform of the objective (33).
By assuming independence of the noise trade and fundamentals, we can
write the objective in detail as

(40) max
{B,Γ,Θ}

−
∫ a+i∞

a−i∞
tr

{(
(Φ−ΘΦ)−BHΛ

−HΛ

)(
(1 + Γ∗)B∗ Γ∗

)
R

− C

2
ΘΦΦ∗Θ∗

}
ds

where the causal and anti-causal parts reflect the inner product that is ex-
pressed in the objective, and where R is the covariance matrix function of
the Dirac-δ fundamentals e(t) and u(t).22 To keep the model tractable, I
will assume as in [9] and [33] that the noise trade process is uncorrelated
with the fundamental value and signal processes, so the covariance function
R is block diagonal:

(41) R =

(
Re 0
0 Ru

)
.

which parallels equation (7) of [9].
It is key that the optimization in equation (40) is now over the functions

B, Γ, and Θ. Before solving this problem, I state the similarly transformed
problem of the market maker.

5.2. The market-maker’s objective. Similarly, the market-maker’s ob-
jective can be stated in the frequency domain. The market-maker strives to
minimize the forecast error variance of price conditional on order flow:
(42)

max
{Λ}
−
∫ a+i∞

a−i∞
tr

{(
(Φ−ΘΦ)−BHΛ

−HΛ

)(
(Φ∗ − Φ∗Θ∗)∗ − Λ∗H∗B∗ −Λ∗H∗

)
R

}
ds

Again, it is key that the optimization in this problem is over the function Λ.

22Again, see [27] p. 218 or [24] p. 209.
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5.3. Equilibrium in the frequency domain. Having translated the model
to the frequency domain, it is now possible to restate the equilibrium defi-
nition for the frequency domain version of the model. In the original time
domain version of the problem, the equilibrium is a set of stochastic pro-
cesses. Those processes can be characterized by the filters on the fundamen-
tal processes, and those filters when transformed are functions in H2 that
can be treated as algebraic objects that are the solutions of simultaneous
equations. Solving for those functions implicitly solves for the equilibrium
time-domain functions via inverse transforms.23

Definition 11. A stationary dynamic linear Bayesian Nash equilibrium is
a trading strategy triple (B(·),Γ(·),Θ(·)) of elements in H2 and a linear
pricing rule Λ(·) ∈ H2 such that

(i) The trading strategy solves the informed trader-large shareholder max-
imisation problem (40), conditional on the linear pricing rule and the
information set characterized by R;

(ii) The linear filter Λ(·) minimizes the market maker’s forecast error
variance in equation (42) with the information in order flow, condi-
tional on the informed trader’s trading strategy (B(·),Γ(·),Θ(·))

5.4. Solving the transformed model. As in the static model, the large
shareholder can take as given the modified fundamental process, as expressed
by the term (1−Θ)Φ, as the exogenous fundamental process when calculat-
ing the optimal trading strategy functions B and Γ, and then calculate the
optimal Θ separately. In keeping with the notation in the earlier analysis
I will denote the value process after manipulation by the large shareholder
by Φ̃. The large shareholder acts on his private signal which has filter Φ, so
the modified value process filter might be

Φ̃ =
(
Φ(s)−Θ(s)Φ(s)

)′
5.5. The solution for B. Following the steps in [9], the first-order condi-
tions of the s-transformed objectives can be stated. First, the notation

A∗

denotes an arbitrary function is the s-domain that is anti-causal, that is,
A∗(s) = 0, for s in the right half-plane.

The variational first-order condition for B in the large shareholder’s ob-
jective (40) is[ (

Φ̃−BHΛ
)

(1 + Γ∗)−B(1 + Γ)Λ∗H∗
]
σ2
e = A∗,

which is a Wiener-Hopf equation. In the uncorrelated case the elements
are all scalars and will commute; the solution methods for continuous-time

23Because the frequency domain solutions for the functions have clear economic inter-
pretations, I will not actually carry out the inverse transform.
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Wiener-Hopf equations outlined in Kailath, Sayed and Hassibi section 7.A
can now be used. Gather terms to restate the equation as

(43) B
[
ΛH(1 + Γ∗) + (1 + Γ)H∗Λ∗

]
σ2
e = Φ̃(1 + Γ∗)σ2

e +A∗

Now propose a factorization

(44) GG∗ ≡ ΛH(1 + Γ∗) + (1 + Γ)H∗Λ∗

where by standard results G can be chosen to be analytic and invertible.
Then the solution is

(45) B =
{

Φ̃(1 + Γ∗)G∗−1
}

+
G−1

where the projection operator {·}+ is defined by

{F (s)}+ = 0, Re(s) ≤ 0

Some interpretation of (45) is possible. The solution for B is the s-transform
analogue of a projection coefficient. There are two elements in the “numera-
tor” or covariance part of this projection coefficient: Φ̃, the filter character-
izing the informed trader’s information, and 1+Γ. As in the static setting, Γ
is itself (the negative of) a generalized projection coefficient of the informed
trader’s order flow filter on his private signal against the total order flow.

The “denominator” of (45) is the analogue of the variance of that part of
the price process that is driven by this forecast error. The solution for B in
(45) is therefore the forecast error of the projection of the informed trader’s
information against the net information in total order flow.

Before developing the first-order condition for Γ the first-order condition
for the market maker will be developed. That condition will be applied to
simplify the large shareholder’s problem.

5.6. The solution for the pricing filter Λ. The market maker’s first
order condition is

(46)
(
−H∗B∗ −H∗

)
R

(
Φ̃−BHΛ
−HΛ

)
= A∗

where the matrices have been transposed under the trace operator. Also, the
two separate terms of the first-order condition have been consolidated into
a single one by taking the conjugate-transpose of the second term. Defining
the function J via the factorization

(47) J∗J ≡
(
B∗ 1

)
R

(
B
1

)
=
(
B∗ I

)
R

(
B
I

)
= B∗ReB +Ru.

It is then possible to write the first-order condition as

H∗J∗JHΛ = H∗
(
B∗ I

)
R

(
Φ̃
0

)
+A∗ = B∗ReΦ̃ +A∗.

where in the last step the block-diagonal structure of R has been used. Note
also that the filter characterizing the total order flow process is JH.
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Multiplying both sides by H∗−1,

(48) J∗JHΛ = B∗′ReΦ̃ +A∗

with solution

(49) Λ = H−1J−1

{
J∗−1B∗′R

(
Φ̃
0

)}
+

The interpretation of the solution in (49) is straightforward. The total order
flow process process is implicitly defined by the filter J . The solution for
Λ is then the s-transform analogue of the projection coefficient of the true
value process on total order flow.

I next return to the first-order condition for Γ, making use of the market-
maker’s first-order condition (46).

The solution for Γ. The variational first-order condition for Γ is

(50)
(
B∗ 1

)
R

(
Φ̃−BHΛ
−HΛ

)
+
(
−Λ∗B∗ −Λ∗

)
R

(
B(1 + Γ)

Γ

)
= A∗

Substituting from the market-maker’s first-order condition (46), the first
term drops out, yielding(

−Λ∗B∗ −Λ∗
)
R

(
B(1 + Γ)

Γ

)
= A∗

Eliminating the Λ∗ term yields(
B∗ I

)
R

(
B(1 + Γ)

Γ

)
= A∗.

Using the block-diagonal structure of R yields

(51) J∗JΓ = −B∗Re
(
B
0

)
+A∗

with solution

(52) Γ = −J−1

{
J∗−1B∗′Re

(
B
0

)}
+

As was pointed out above, the solution (52) is the s-transform analogue of
(the negative of) the projection coefficient of the informed trader’s filter on
his private information against the information in total order flow.

This fact can be used to interpret the informed trader’s order flow strat-
egy. Examining the informed trader’s frequency domain objective in (40),
the informed trader’s order flow process is characterized by the vector of the
filters (

B(1 + Γ) Γ
)

acting on the vector of processes
(
e(t) u(t)

)′
; the Γ terms express the pro-

jection on the information in price. Interpreting Γ as negative—as was the
case in the static example—this projection is subtracted from direct trade
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process on the private information itself, that is from the filter b acting di-
rectly on the process e(t).24 The interpretation is that the informed trader
knows that any information the market makers can infer about his private
information will be incorporated in price and thereby its profit potential
neutralized. The informed trader thus trades only on the residual, unfore-
castable part of his private signal.

The transform method lends itself well to establishing this “inconspicu-
ousness” result, and the associated result that the price process must be
structurally equivalent to the value process itself, because the processes of
the model can be characterized by their poles and zeroes:

Proposition 12. In an equilibrium,

(i) The large shareholder executes his trades so that total order flow has
the same autoregressive structure as the noise trade, that is, he hides
and is inconspicuous;

(ii) The autoregressive structure of the price process is identical to the
autoregressive structure of the fundamental process.

Proof: This is a corollary of Propositions 16 and 17 in Appendix E. 2

The solution for Θ. I now turn to the first order condition for Θ, the large
shareholder’s amplification factor. A key assumption now comes into play:
that the large shareholder ignores the influence of the amplification factor
Θ on the pricing filter Λ, which appears in equation (49); in this sense the
Bayesian Nash assumption is a binding constraint. The resulting variational
first order condition is

(53) −Φ∗
(
B(1 + Γ)

)
Re − (ΘΦΦ∗ + ΦΦ∗Θ∗)

1

2
C = A∗

Consolidating via the conjugate transpose yields

(54) −Φ∗
(
B(1 + Γ)

)
Re −ΘΦ(s)Φ∗C = A∗

Dividing out Φ∗ then yields

−
(
B(1 + Γ)

)
Re −ΘΦ(s)C = A∗

The solution of the first-order condition for Θ (54) is then straightforward:

(55) Θ = −C−1B(1 + Γ)RΦ−1

Substituting this into the objective, the Φ−1 term cancels the Φ term in the
objective, leaving

(56) Φ̃ = Φ +B(1 + Γ)C−1.

Recall that Γ is the transform of γ(·), which in turn is the dynamic analogue
of the static projection coefficient γ. The expression I + Γ is the transform
of the forecast error filter. Thus, as with the static model, the term that

24The reader is reminded that these operations take place under integrals: see Appendix
B.



INCONSPICUOUSNESS AND OBFUSCATION 29

is added on to the raw fundamental process Φ by the large shareholder is
simply the unforecastable part of the large shareholder’s trade!

6. Optimal obfuscation

In this section I carry out three tasks: First, I provide the main result of
the paper: that the optimal Θ necessarily alters the fundamental stochastic
structure of the firm. Second, I outline how existence might be demon-
strated. Third, I develop a numerical example to illustrate the main result
about the structure of Θ.

Demonstrating the non-constancy of Θ. The large shareholder does
not just amplify the unforecastable part of his trades, he also alters the time
series structure of the fundamental process itself in order to improve trading
profits. This is expressed as the non-constancy of Θ. To demonstrate this I
make the following assumption:

Assumption 13. The unmodified fundamental process Φ has only one pole.

The assumption allows the direct application of some useful theorems
about the algebra of functions in the frequency domain, particularly Lemma
15 in Appendix D.

Proposition 14. Let Assumption 13 be met. Then the optimal Θ is not a
constant and therefore (1 − Θ)Φ is not proportional to Φ, that is, the large
shareholder alters the autoregressive structure of the firm’s fundamentals.

Proof: The proof is by contradiction. Examining equation (55), Θ =
−C−1B(1 + Γ)RΦ−1, the result will follow if it can be demonstrated that
(1 + Γ)B is not of order Φ. Recalling the solution for B from equation (45),

B =
{

Φ̃(1 + Γ∗)G∗−1
}

+
G−1, we have

G−1
{
G∗−1Φ̃H∗

}
+
H

Applying the annihilator lemma, Lemma 15, under the hypothesis that Θ is
a constant and therefore that Φ̃ is proportional to Φ, we have

∼ G−1HΦ

To establish that this expression not of order Φ, we can equivalently demon-
strate that ∼ G−1H is not a constant. Recalling the definition of G from
equation (44),

(57) |G|2 = GG∗ ≡ [ΛHH∗ +HH∗Λ∗] = (Λ + Λ∗)HH∗

Defining

Λ + Λ∗ ≡ |L|2
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By Proposition 17 in Appendix E, Λ is of order Φ; therefore L(s) is a function
that has nontrivial zeroes as well as the same poles as Φ. Thus, L(s) is the
product N(s)Φ(s), and N(s) is a non-constant function. we can then write

G = LH

and so G−1H = L−1 is a non-constant function, and so G−1HΦ is propor-
tional to N(s)−1, which is not proportional to Φ. 2

Thus, the large shareholder dynamically obfuscates: he not only ampli-
fies the fundamental value process, he alters its time series structure by
the market makers’ forecast error. In the numerical computation it is pos-
sible to say more: in attempting to amplify the non-forecastable parts of
the fundamental, the large shareholder attempts to mimic the noise trade
process.

6.1. Existence and characteristics of equilibrium. A proof of the of
existence of equilibrium would use the iterative approach of [33] and is be-
yond the scope of this paper. The complexity of the problem can be seen
by considering how the equilibrium would work if Proposition 14 were not
true, that is, if Θ were in fact a constant. Conditional on a solution for
the constant Θ, the modified fundamental process (1−Θ)Φ is determined,
and an equilibrium can be generated using the recursion approach of [33]
to determine B, Γ and Λ. The optimal constant Θ could then be deter-
mined from the solution for Θ in equation 55. However, as developed in
Proposition 14, the solution will have the property that Λ, the pricing filter,
will be a function of Θ even though this dependence is ignored by the large
shareholder when optimizing due to the Nash assumption. Thus, to find the
equilibrium Θ it would be necessary to solve a fixed point problem for the
system of equations for B, Γ, Λ and also Θ,

B =
{

Φ̃(1 + Γ∗)G∗−1
}

+
G−1

Γ = −J−1

{
J∗−1B∗′Re

(
B
0

)}
+

Λ = H−1J−1

{
J∗−1B∗′R

(
Φ̃
0

)}
+

Θ = −C−1B(1 + Γ)RΦ−1

taking account of this dependency. Whilst a recursion leading to a fixed
point for the system with a fixed Θ can be developed along the lines of the
similar problem in Seiler and Taub [33], the addition of the Θ equation adds
significant complexity.

Numerical characterization. As a step in the direction of at least char-
acterizing the nature of the equilibrium, I next carry out a numerical cal-
culation that would amount to a first step in an iterative approach: I posit
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that the dependence of Λ on Θ right hand side of the solution for Θ, equa-
tion (55), is ignored, and calculate the optimal iterated Θ on the left hand
side in order to roughly characterize the large shareholder’s strategy.

Stacking the first order conditions for B and Θ from equations (43) and
(53) (see equation (64) in Appendix F) yields a matrix system with a co-
efficient matrix that can be factored to determine the solutions for B and
Θ and then the entire system. Carrying out the factorization and plotting
the spectral density of the Φ and (1 − Θ)Φ filters shows that Θ amplifies
high frequencies more than low frequencies—that is, it actually reduces the
persistence of the fundamental (see Figure 1). The intuition for the empha-

Figure 1. Plot of the spectral densities
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This figure plots the spectral densities of the Φ process filter (1− .93z)−1 (dashed line),

the insider’s amplification filter (1−Θ) (dotted line) and the net process filter (solid

line). The amplification filter amplifies high frequencies more than low frequencies, thus

reducing the persistence of the fundamental.

sis on high frequencies is that the large shareholder wants to masquerade as
a noise trader (that is, to become even more inconspicuous), and the noise
trade has zero persistence. Thus, the amplification factor moves the fun-
damental in the direction of white noise. Note also that the amplification
factor increases the level of the spectral density at every frequency—that is,
the overall volatility of the fundamental is increased, as the analytical model
demonstrates.

In the description of the static model, I noted that it would be possible
to frame the penalty term in a more realistic way, that is, as a cost imposed
on the large shareholder for failing to hit a target that represents the public
objectives of the firm, thus capturing the trade-off between the public and
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private incentives of the large shareholder. In the dynamic model, there is
an added dimension to this trade-off: the target might be a process, T (L)ηt.
A Θ that fails to match the autoregressive structure of the target process
will entail a penalty beyond the penalty stemming from the difference in
magnitude: the Θ necessary to hit the target might have a very different
structure from the Θ that moves the fundamental in the direction of re-
sembling the noise trade process. This will further alter Θ and therefore
move the private fundamental process away from the structure of the noise
process.

One can look at it the other way: the visible target-hitting part of the large
shareholder’s behavior is going to be influenced by the “dark” unobservable
side, so that the Θ process fails to directly offset the visible process T (L)η(s).
Thus, trading incentives that are hidden will distort the publicly observable
allocation of resources of the firm.

7. Conclusion

The following phenomena were demonstrated:

(i) The large shareholder amplifies the unforecastable part of the fun-
damental in order to increase his trading profits.

(ii) In a dynamic setting, the informed trader behaves so as to be incon-
spicuous, so that total order flow has the autoregressive structure
of the noise trade, and price has the autoregressive structure of the
fundamental value process.

(iii) In a dynamic setting, the large shareholder alters the autoregressive
structure of the firm’s fundamental value process, that is, he dynam-
ically obfuscates, and because this alteration is based on the market
makers’ forecast error process, it does not increase the amount of
information available to the market.

Given that the large shareholder’s trading profits can be enhanced by
his alteration and amplification of the private signal, there is an incentive
to acquire private information, along the lines set out in [7]. One usually
unspoken element of private information models is the reason for the privacy
or unobservability of the information. It is evident here that there are strong
incentives to acquire private information and also to keep it private.

The amplification of this private information that takes place has a wider
consequence. Recalling that Kyle’s λ is a measure of price impact and is
therefore inversely related to liquidity, and also that λ is positively related to
the volatility of the fundamental value of the stock, a property that extends
appropriately in the dynamic model as well, then the large shareholder’s
amplification of the volatility of the fundamental reduces market liquidity.
The optimality of the resulting equilibrium level of liquidity is an open
question.

In a more elaborate model the large shareholder would be enjoined to
hit publicly observable fundamental targets. This would cause the large
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shareholder’s activities to be divided between his fiduciary actions and the
amplification of his privately observable shocks for trading purposes. The
result is twofold. First, the autoregressive structure of the publicly observ-
able shocks will cause the large shareholder’s amplification of the private
shock to be influenced by the autoregressive structure of the private shock
and of the noise trade structure.

Second, the publicly observable actions will be influenced by the ampli-
fication effect, and in a dynamic setting this will mean that the publicly
observable shocks will be imperfectly offset not only in their magnitude but
in their time series structure as well—this, despite the fact that the public
shocks, private shocks and noise trade shocks can all be mutually indepen-
dent. One can view the influence of the private and noise trade shocks as a
kind of “dark matter” that distorts the allocation of resources in the firm.

A central feature of business cycles is that they are persistent relative to
the shocks that induce them. Successfully explaining this persistence re-
quires explaining how firms fail to adjust quickly to shocks. The model here
suggests that agents in possession of private information about fundamental
shocks will not only obfuscate that information by amplifying the unfore-
castable part, they will add to the obfuscation by deliberately altering its
autoregressive structure. Thus, if there is any uncertainty about aggregate
nominal processes along the lines of [30], such obfuscation will actually ex-
acerbate the associated signal extraction problem, and with it, deliver the
aggregate fluctuations we observe.
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Appendix A. On the equivalence of the direct and indirect
methods of solving the static model

In this appendix I briefly recapitulate the demonstration of the equiv-
alence of the direct and indirect approaches as outlined in Bernhardt and
Taub [6].

Suppressing the effect of θ and taking the linear pricing rule as given, the
large shareholder’s optimization problem in direct form is

(58) max
x

E
[
(e− λ(x+ u))x

∣∣∣e, p]
Observing price as well as the signal is equivalent to observing u as well; the
problem is then deterministic, with solution

(59) x =
1

2λ
e− u

2
.

which is linear. It is useful to map this solution into the linear structure in
equation (4) of the main text. After simple algebra,

b =
1

λ
γ = −1

2
.

The market maker chooses the pricing rule to best predict the value e condi-
tional on order flow due to the assumption that the market makers compete
and earn zero profit. With the informed trader’s order flow linear, λ is then
calculated by a projection, which is

λ =
cov(e, x+ u)

var(x+ u)
=

cov(e, 1
2λe−

u
2 + u)

var( 1
2λe−

u
2 + u))

=
1

2λσ
2
e

1
4λ2

σ2
e + 1

4σ
2
u

Solving this equation for λ and substituting into the equation for b yields
the solution in equation (13) of the main text.

The indirect approach begins with the assumption that the demand sched-
ule is linear (as this has been justified by the solution in equation (59)). The
optimization problem is then

(60) max
{b,γ}

E
[
(e− λ(be+ γ(be+ u) + u))(be+ γ(be+ u))

∣∣∣e, p]
Taking the expectation before calculating the first order conditions yields
equation (7) in the main text, and the subsequent calculations yield the
same results as the direct approach.

The dynamic version of the argument can be seen in for example Bern-
hardt, Seiler and Taub [9].

Appendix B. Remarks about Brownian processes in continuous
time and their transforms

Technically speaking, the formulation in (21) is mathematically ill-defined:
the sample paths of white noise in continuous time are not continuous or even
measurable. To address this issue, Davis ([17] pp. 79-83) and Doob ([19] p.
426) begin their treatments of white noise by constructing Brownian motion



INCONSPICUOUSNESS AND OBFUSCATION 35

via limiting arguments; for example, Davis develops Brownian motion as the
sums of products of Haar functions (a type of step function) with Gaussian
random variables. He later provides a second derivation using Ornstein-
Uhlenbeck processes, which are well-defined via their correlation functions.
Davis then examines the limiting properties of the Fourier transform of the
Ornstein-Uhlenbeck covariance function. The limit of the Fourier transform
is simply a constant, which is the Fourier transform of the delta function.
The delta function is also an ill-posed object, but its integral is a step func-
tion, which is tractable. Davis then argues that Brownian motion can be
well-defined as the integral of white noise, which by the limiting argument
has a covariance function that is a step function, and is thus well posed. He
concludes that integration of white noise, either in its pure form (yielding
Brownian motion) or as convolutions with a filter such as φ (yielding a sta-
tionary process such as an Ornstein-Uhlenbeck process) is mathematically
sound:

The conclusion we arrive at from the above discussion is that
we cannot represent mathematically white noise itself, but if
it appears in integrated form then Brownian motion is an
appropriate model. ([17] p. 82)

Doob and also Hansen and Sargent draw a similar conclusion.
As noted in the discussion of equation (25), the noise trade term u(t)

can be viewed as white noise in the limit as η goes to infinity. Given that
white noise is itself ill-defined, it is mathematically more sound to view the
Laplace transform of u(t) as occurring before taking that limit, that is, it is
the transform of the integrated process

u(t) ≡
∫ ∞

0
e−ητdN(t− τ)

where N(t − τ) is a Brownian motion. If η < ∞, the Laplace transform
of the integral is well-defined, and so one can think of it that way, taking
the the limit of the Laplace transform as η tends to infinity. This is what
Davis ([17] p. 80) does: specifically, he examines the Fourier transform of
the (auto) covariance function of the Ornstein-Uhlenbeck process, that is,

cov(u(t), u(s)) ≡ σ2e−α|t−s|

then lets the salient parameter (α in his notation) tend to infinity; this yields
a flat spectrum which he notes is the transform of a delta function, which
is the correlation function of white noise. Hansen and Sargent carry out a
similar operation: see their first example ([24] p. 213).

As Kailath, Sayed and Hassibi and also Hansen and Sargent note, the
Laplace transform is a special case of the Fourier transform, and care must
be taken to ensure that the integration inherent in the transforms converges.
Kailath, Sayed and Hassibi refer to exponential boundedness of the pro-
cesses; this is a specialization of the more general requirement that the
functions in question have no poles in the domain of interest. Specifically,
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as elaborated by Hansen and Sargent, I assume that functions are analytic in
a strip along the imaginary line, and the imaginary line itself is in this strip
because of discounting. Moreover the endogenous processes that will later
be generated by optimization and equilibrium will automatically satisfy this
criterion.

Appendix C. Fourier transforms of continuous-time processes

The Ornstein-Uhlenbeck process is the continuous-time analogue of the
discrete autoregressive process:

dx = axdt+ dz

The integral representation is

x(t) =

∫ t

−∞
ea(t−s)dz(t)

The Fourier transform of ea(t−s) is
1

iω − a
and the Fourier transform of dz (which corresponds to white noise) is the δ
function. (A reference is Igloi and Terdik [26], p. 4.) The spectral density
is

1

a2 + ω2

The Fourier transform (and corresponding Laplace transform) resemble the
pole forms 1/(z − a) in discrete time models. The building block in the
s-domain is therefore also rational functions, except that causality is associ-
ated with poles in the left half plane instead of the unit circle. An additional
reference is Hansen and Sargent [24].

Observe that a = 1 yields the Fourier transform of a standard Brown-
ian motion; thus, with discounting it isn’t a problem to translate standard
discrete-time stationary models to this setting, and vice versa.

Appendix D. Practical details of spectral factorization and
annihilator operations in continuous time

In this appendix I examine how factorization and the annihilation opera-
tor work in practical examples. I begin by briefly recapitulating an example
from Kailath, Sayed and Hassibi, p. 263-264. Kailath, Sayed and Hassibi
posit a model which has the following Wiener-Hopf equation:

(KSH 7.A.4) K(s)Sy(s) = Ssy(s)e
sλ −G(s)

Here K(s) is the Laplace transform (s-transform) of the unknown filter that
is to be found; G(s) is the Laplace transform of a function g(t) that is a
purely anticausal function, that is, a function that is analytic on the left
half plane only and zero in the right half plane, but which is otherwise
arbitrary, corresponding to the principal part function

∑−1
−∞ in the discrete
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time setting: g(t) = 0, t > 0; Ssy(s) and Sy(s) are the Laplace transforms
of variance and covariance functions

Sy(s) = L{Ry} Sys(s) = L{Rys}
with

Ry(τ) ≡ E[y(t)y(t− τ)] Rys(τ) ≡ E[s(t)y(t− τ)]

Note that Kailath, Sayed and Hassibi have some contrasting notation: pro-
cess s(t) is in boldface, and the argument of the Laplace-transformed func-
tion s, which is completely different. Thus, Sy is the Laplace transform of
the observed process, and s(t) is the signal process that the observer wants
to extract; Rys is then the covariance function between the observed and
signal processes.

The exponential term appears in the Wiener-Hopf equation because the
original equation is shifted:

Rsy(t+ λ) =

∫ ∞
0

k(τ)Ry(t− τ)dτ, t > 0

which captures the idea of time-lagged observations.
To solve the problem ([27] 7.A.4), first factor Sy. Abstractly, this factor-

ization is

(KSH 7.A.2) Sy(s) = L(s)RL∗(−s∗)
where R is a positive constant, and L(s) is causal, that is, both L and L−1

are analytic on the right half plane.
Now write the solution:

(KSH 7.A.7) K(s) = L(s)−1
{
L∗(−s∗)−1R−1Sxy(s)e

sλ
}

+

The remaining agenda is to carry out a factorization for a practical problem
and to demonstrate how the annihilation operation works in that practical
setting.

Kailath, Sayed and Hassibi posit a signal process with Fourier transform
spectral density

Ss(f) = F
{
e−α|t|

}
=

2α

α2 + 4π2f2

Note that there is a distinction between the Fourier and Laplace represen-
tations. Defining s ≡ 2πif , the equivalent bilateral Laplace transform is

Ss(s) = L
{
e−α|t|

}
=

2α

α2 − s2

The noise process v(t) is white noise (not the same as a Brownian process!)
which has a flat spectrum:

Sv(s) = 1

and the sum of the signal and noise, y(t) = s(t) + v(t), is (because the
Laplace transform of a sum is the sum of the Laplace transforms)

Sy(s) = Ss(s)+Sv(s) =
2α

α2 − s2
+1 =

2α

α2 − s2
+1 =

s2 − α2 − 2α

s2 − α2
= L(s)RL∗(−s∗).
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The denominator of this expression is the product (s − α)(s + α). Restate
the entire expression as a product:

s+
√
α2 + 2α

s+ α

s−
√
α2 − 2α

s− α
so that

L(s) =
s+
√
α2 + 2α

s+ α
.

(Of course this is just one of the potential factorizations.) Note that L
is analytic in the right half plane because its pole, −α, is in the left half
plane, and the inverse is analytic in the right half plane because the zero,
−
√
α2 + 2α, is in the left half plane.

The final step is to calculate the annihilate. To do this, a partial fractions
calculation must be done. The argument of the annihilator is

s− α
s−
√
α2 + 2α

2α

α2 − s2

Writing out the factors in the denominator, there is a cancellation:

=
s− α

s−
√
α2 + 2α

2α

(α− s)(α+ s)
= − 1

s−
√
α2 + 2α

2α

α+ s
.

Now rewrite this with partial fractions:

=
− 2α
α+
√
α2+2α

s−
√
α2 + 2α

+

2α
α+
√
α2+2α

α+ s
.

The annihilator kills elements that have poles in the right half plane; the
first term will therefore be killed:{

− 2α
α+
√
α2+2α

s−
√
α2 + 2α

+

2α
α+
√
α2+2α

α+ s

}
+

=

2α
α+
√
α2+2α

α+ s
.

Therefore the solution of the Wiener-Hopf equation is

K(s) =
s+ α

s+
√
α2 + 2α

2α
α+
√
α2+2α

α+ s
=

2α
α+
√
α2+2α

s+
√
α2 + 2α

.

This is the Laplace transform for a filter. The actual filter can be obtained
by performing the inverse transform operation.

D.1. A small lemma about the annihilator. The annihilator operator
is a linear operator and therefore can be expressed as an integral ([27], p.
263):

(61) {F (s)}+ =

∫ ∞
0

[
1

2πi

∫
F (p)eptdp

]
e−stdt

The interpretation is straightforward: perform the inverse Laplace transform
with the inner integral (which in conventional situations is integrated along
the imaginary axis). Then perform the one-sided Laplace transform on the
result, which picks up only the part of the function defined for positive t,
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that is, in the right half plane. The following small lemma holds, which is a
variation of Whittle’s theorem.

Lemma 15. Let F be analytic in the right half plane, and let a > 0. Then{
F ∗(r − s∗) 1

s+ a

}
+

= F (r + a)
1

s+ a

Proof: I will first demonstrate this for a simple version of F , namely
F (s) = 1

s+b , b > 0—namely when F is also the filter for an Ornstein-

Uhlenbeck process. In that case, the inner integral of (61) is

1

2πi

∫
1

−p+ r + b

1

p+ a
eptdp

Now do partial fractions:

=
1

2πi

∫ ( 1
r+b+a

−p+ r + b
+

1
r+b+a

p+ a

)
eptdp

The integration is along the imaginary axis. This is equivalent (via a Möbius
transform) to integrating around the unit circle. Consequently Cauchy’s
theorem can be invoked: a holomorphic function with a pole in the right
half plane integrates to zero. The pole of the first term in the expression
is p + r, and therefore the integral of the first term is zero. The remaining
expression is

1

r + b+ a
e−at

Now take the outer integral.∫ ∞
0

[
1

r + b+ a
e−at

]
e−stdt =

1

r + b+ a

1

s+ a
.

This completes the proof for this simple case.
If f is analytic, then it can be represented in power series form:

f(τ) =
∞∑
k=0

fke
−bkτ .

The s-transform of this function is

F (s) =

∞∑
k=0

fk
1

s+ bk
.

Now proceed as in the proof above for each k. 2

This result is stated and proved in greater generality for matrix systems
in Seiler and Taub [33], Lemma C.18, using state space methods. When
general compound expressions of the sort {FG∗}+, where both F and G are
analytic, that is, their poles are in the left half plane, are viewed from a
state space perspective, it is clear that the product will be a function with
poles in the left half place inherited from the poles of F and poles in the
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right half plane inherited from G. The annihilator removes the latter poles,
while the poles of F survive.

Appendix E. Some propositions about the order flow and price
processes in equilibrium: Inconspicuousness

As also demonstrated in [9], [8] and [33], the forecast error characteriza-
tion of the trading strategies has broader implications. First, because the
informed traders do not want to be detected by the market makers or by
their rivals, they hide behind the noise traders. This requires that the order
flow process have no dynamic structure that would allow market makers to
infer the informed trades. Therefore, the total order flow will have the same
stochastic structure as the noise trade process.

Second, the price process must not have a dynamic structure that is fun-
damentally different from the dynamic structure of the fundamental asset
value process, as this would allow the informed traders to arbitrage against
it purely based on filtering the dynamic structure.

These results are general in that they hold for multiple informed traders.
In this appendix the vector notation reflects this generality.

Proposition 16. The total order flow process filter

JH

is a constant matrix. Therefore order flow has the same dynamic structure
as the filter for the noise trade process u(t).

Proof: Add up the Γi equations (51) across traders, yielding

J∗J
∑
i

Γi = −B∗Re
∑
i


0
...
Bi
...
0

+A∗

Recalling the definition H ≡
∑

i Γi + I and using the vector expression B,

J∗J(H − I) = −B∗ReB +A∗.

From the definition of J in equation (47),

J∗J(H − I) = −(J∗J −Ru) +A∗

where Ru is the covariance function for the noise trade process. Also recall
that it is assumed that the covariance functions for the fundamental pro-
cesses are Dirac δ functions, so Ru is a constant matrix. Because no further
filter is applied to the noise trade process, noise trade is white noise.

Algebraic manipulation then yields

J∗JH = Ru +A∗.
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Order flow is then

JH =
{
J∗−1Ru

}
+

Because Ru is a constant matrix, the projection operator eliminates all poles
in the negative half plane. But J was constructed via factorization to have
poles only in the positive half plane, and therefore the projection must be a
constant. 2

Proposition 17. The price process filter

JHΛ

has the same pole structure as the value process filter Φ, and therefore the
price process has the same dynamic structure as the value process.

Proof: The filter for the price process is the order-flow filter JH multi-
plied by the pricing filter Λ.

Multiplying the first-order condition for Λ, (48) by J∗−1 and applying the
annihilator yields the equation for the price process,

JHΛ =
{
J∗−1B∗ReΦ

}
+
.

By Lemma 15 in Appendix D, the right hand side is the product of a constant
matrix and Φ. Thus,

(62) JHΛ = CReΦ.

where C is a constant matrix J(r + ρ)−1B(r + ρ). 2

It should be noted that if the large shareholder chooses Θ, then the propo-
sition holds for Φ̃ = (I −Θ)Φ, where Φ is the filter for the unmodified fun-
damental process. The application of Lemma 15 then requires the matrix
formulation in which the non-pole part of Φ̃ is represented by a pole at
infinity.

E.1. Acceleration. As was shown in [33] and [9], the informed traders
trade intensely on their information, in the sense that the filter on the fun-
damentals of their private signals has a pole structure such that their order
flow on private signals is less serially correlated than the asset value itself.
The proof of this was set out in [33] for the discrete time multi-asset case.
The proof there has two main parts. The first part is to establish that the
poles exceed the poles of Φ. This is done by showing that the equilibrium
mapping of a conjectured pole structure for b results in a set of larger poles.
The second part follows by showing that the number of poles increases by
one for each iteration of the mapping, and that therefore there must be
infinitely many in equilibrium.25

25To clarify terminology, a pole can be intuitively viewed as the inverse of an au-
toregressive coefficient in discrete time, and is therefore (for stationary processes in the
discrete-time setting of [33]) greater than the square root of the discount factor in abso-
lute value. In continuous time poles correspond to points in the right half plane. As the
number of poles is infinite, this requires that the poles converge to infinity. It can then
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E.2. Discussion and related literature. The results here are a little
more general than some of the literature in the following sense. In Danilova
[15] for example, which has dynamic evolution of the fundamental value
and a single informed trader, the hiding idea is termed inconspicuousness.
But in that model, the asset fundamental value process and the noise trade
are both Brownian processes with jumps, so the dynamic structure or order
flow is no different than the price process. Here, by contrast, the noise
trade is serially uncorrelated while the fundamental value process is serially
correlated. Therefore in order to hide, the informed traders must adjust not
just the magnitudes of their trades, but their dynamic pattern.

E.2.1. Relationship with the order-splitting literature. The reason for the
order flow result is related to the result of Back and Baruch [4]: the informed
traders pool with the noise traders, that is, they hide their trades. The
Back and Baruch model establishes that breaking up large block orders into
a sequence of small ones is optimal, but the result here emphasizes that it is
not the breaking up of the orders that is crucial, but the fact that the orders
are stochastically indistinguishable from the noise trades that matters.

In this sense the model also suggests that there is not an important dif-
ference between dealership markets and other market structures such as a
limit order market, buttressing Back and Baruch’s central finding.

Back and Baruch [4] set out a model in which informed traders can post
orders of any size; in equilibrium they order one share at a time, with large
(block) orders being expressed as a high rate of single-share orders. The
result is that informed traders pool with uninformed traders. The results
here are equivalent: informed traders want to appear like noise traders,
otherwise their information can be extracted by market makers. Back and
Baruch demonstrate the equivalence of their market structure with one in
which there is an open (public) order book with limit orders, in which in-
formed traders put in limit orders.

In particular, Back and Baruch note that in a floor-trading model—that
is, one with competitive market makers, as in the Kyle [28] model, the
informed traders might submit a large order, but it must be structured (via
a mixed strategy) so that market makers cannot clearly identify it as an
informed order as would be the case in a separating equilibrium:

When orders are worked, liquidity providers on a floor ex-
change can of course condition on the size of an order, but
they cannot condition on the size of the demand underlying
the order—they cannot know whether there will be more or-
ders from the same trader in the same direction immediately
forthcoming. Thus, in a pooling equilibrium on a floor ex-
change, ask prices are upper-tail expectations—expectations
conditional on the size of the demand being the size of the

be argued that arbitrary rational functions can be approximated by the sums of such pole
terms, and also characterized by the pattern of weights on those pole terms.
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order or larger—precisely as in a limit-order market. This is
the reason a pooling (worked-order) equilibrium on a floor
exchange is equivalent to a block-order equilibrium in a limit-
order market. ([4], p. 2)

E.2.2. Relationship to the speed of revelation literature. The high intensity
of trading relative to information arrival result matches the similar result
from the discrete-time models in Bernhardt, Seiler and Taub [9] and [33],
also expressed by the infinitely long pattern of poles. There is a related
result in the paper of Chau and Vayanos [13]. The Chau and Vayanos
model uses a different information structure: market makers can observe
firm value contemporaneously, but cannot forecast its evolution, while the
informed trader can forecast. In their model, which has a single informed
trader in an infinite horizon setting with stationary asset value evolution
and continuous information arrival, trading intensity is accelerated relative
to the arrival rate of information, but because of the model structure the
acceleration results in full and immediate revelation of the informed trader’s
information.

Appendix F. Factoring the coefficient matrix

Combining the first order conditions for B and Θ in equations (43) and
(54) yields the vector condition,

(63)

(
HΛH∗ +HΛ∗H∗ ΦH∗

HΦ∗ CΦΦ∗

)(
B
Θ

)
=

(
ΦH∗

0

)
+A∗

The coefficient matrix on the left is Hermitian and so can be factored. The
coefficient matrix can be written as

(64)

(
H∗ 0
0 Φ∗

)(
H−1HΛ + Λ∗H∗H∗−1 1

1 C

)(
H 0
0 Φ

)
The internal matrix is then easier to factor because only the upper left
element is nonscalar.

From equation (64) we have:

(65)

(
H∗ 0
0 Φ∗

)(
Λ + Λ∗ 1

1 C

)(
H 0
0 Φ

)(
B
Θ

)
=

(
ΦH∗

0

)
+A∗

and then use the factorization of the inner part:

(66)

(
H∗ 0
0 Φ∗

)
F̄ ∗F̄

(
H 0
0 Φ

)(
B
Θ

)
=

(
ΦH∗

0

)
+A∗

We can invert the outer parts and then the inner parts:

(67) F̄

(
H 0
0 Φ

)(
B
Θ

)
= F̄ ∗−1

(
Φ
0

)
+A∗
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The cancellation of the H∗ on the right assumes that this is a scalar and
invertible quantity. The solution is(

B
Θ

)
=

(
H 0
0 Φ

)−1

F̄−1

{
F̄ ∗−1

(
Φ
0

)}
+

Now recall from Proposition 16 that 1 + Γ = H ∼ J−1. Thus,(
B
Θ

)
=

(
c2J 0
0 Φ−1

)
F̄−1

{
F̄ ∗−1

(
Φ
0

)}
+

where c2 is a constant that can be derived from Proposition 16. Taking this
a step further we have(

B
Θ

)
=

(
c2J 0
0 Φ−1

)
F̄−1

{(
(F̄ ∗−1)11Φ
(F̄ ∗−1)21Φ

)}
+

Recalling that Φ(s) is Ornstein-Uhlenbeck (the continuous time analogue
of autoregressive) 1

s+a , and invoking the annihilator theorem (Lemma 15 in

Appendix D)

(68)

(
B
Θ

)
=

(
c2J 0
0 Φ−1

)
F̄−1

(
(F̄−1)11(r + a)Φ
(F̄−1)12(r + a)Φ

)
When the algebra is carried further, the Φ terms will cancel from the solution
for Θ. Only the factor F̄ then influences Θ directly. The exact structure of
F̄ can be used to show that Θ is not a constant.

This result can now be used to numerically calculate F and the inverses,
products and annihilates.

Appendix G. Extending the Cholesky decomposition to
matrices of rational functions

In this appendix I detail how to extend the Cholesky decomposition from
ordinary matrices to rational functions. The agenda is to develop the can-
didate factor, but not require that the candidate factor be analytic and
invertible.

One begins with a Hermitian n× n matrix H, with elements hij , that is
to be factored. The immediate question is whether to right- or left-factor
H:

H = LL∗ left factor or H = R∗R right factor

I will follow the left factor strategy. This is sufficient, even if we want a right
factorization: first observe that if H is Hermitian, then so is the transpose
H ′. Thus,

H ′ = (LL∗)′ = (L∗)′L′

which is a right factorization of H ′, and

H ′ = (R∗R)′ = R′(R∗)′.

which is a left factorization. Thus, to obtain a right factorization of H, we
just need to find a left factorization of H ′ and take the transpose of the
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result R′. Thus, it is sufficient to consider the left factorization; the right
factor is simply the transpose of the left factor of H ′.

Next, begin the factorization. Note: this is highly parallel with the devel-
opment on the Wikipedia page on the Cholesky decomposition for ordinary
matrices. The algorithm is recursive. In the first step, we have

H1 ≡ H.

At step i of the algorithm there is an intermediate matrix,

H i =

Ii−1 0 0
0 aii b∗i
0 b b


where Ii is the i-dimensional identity, aii is the ith diagonal entry from Hi,
b is the (n− i)× 1 column vector and the block matrix b is the lower right
(n− i)× (n− i) submatrix from H.

When H is a matrix of numbers, then we take the square root of aii, and
construct the matrix

Li =

Ii−1 0 0
0

√
aii 0

0 1√
aii
b In−i


The H2 operation equivalent to the square root is spectral factorization.
Thus, we want to find fi such that

aii = f∗i fi

This is relatively straightforward because by construction aii is a scalar
function. Thus in the spectral factorization case,

Li =

Ii−1 0 0
0 fi 0
0 f∗−1

i b In−i


Now define

Hi+1 =

Ii−1 0 0
0 1 0
0 0 b− a−1

i bb∗


and

Hn+1 = In

Then

L = L1L2 · · ·Ln.
There is one detail: in the H2 case, how do we know that

Li =

Ii−1 0 0
0 fi 0
0 f∗−1

i b In−i

 not

Ii−1 0 0
0 f∗i 0
0 f−1

i b In−i

 ?
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In the n = 2 case, we can do the multiplication. First,

H1 = H =

(
h11 h∗21

h21 h22

)
,

L1 =

(
f1 0

f∗−1
1 h21 1

)
and

H2 =

(
1 0
0 h22 − h−1

11 h21h
∗
21

)
with

f1f
∗
1 = h11

Defining g by the factorization

gg∗ ≡ h22 − h−1
11 h21h

∗
21.

Then

L2 =

(
1 0
0 g

)
The factor is then

L = L1L2 =

(
f1 0

f∗−1
1 h21 1

)(
1 0
0 g

)
=

(
f1 0

f∗−1
1 h21 g

)
so

H = LL∗ =

(
f1 0

f∗−1
1 h21 g

)(
f1 0

f∗−1
1 h21 g

)∗
=

(
f1 0

f∗−1
1 h21 g

)(
f∗1 h∗21f

−1
1

0 g∗

)
=

(
f1f
∗
1 h∗21

h21 h∗21f
−1
1 f∗−1

1 h21 + gg∗

)
=

(
h11 h∗21

h21 h22

)
Once this initial factor L is constructed, the Ball-Taub algorithm [2] can be
applied to convert the factor to analytic and invertible form. That algorithm
is presented under that assumption that a preliminary right factor R has
been found and the appropriate adjustment must be made.

Appendix H. Factoring an example

Let us consider a simple example in which the fundamental firm value
process is an ar(1) process and expressed by

Φ(z) =
1

1− az
.

We know from previous reasoning that this will lead to the pricing filter to
have the same structure as the fundamental process, that is,

Λ =
λ

1− az
.
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For that reason, the matrix to be factored is

H ≡ F̄ ∗F̄ =

(
Λ + Λ∗ 1

1 C

)
In the following example, a = .93 (so a−1 = 1.075) and C = 1.16. We want
to find a right factor, but the algorithm is set up to find a left factor; we
therefore take the transpose of H and find the left factor, then the transpose
of that factor. However, because of the symmetry of the H we have H ′ = H.

Putting the numbers in and performing an initial factorization yields the
left factor

H =

(
(z−1.470)(z−.680)
(z−1.075)(z−.930) 1

1 1.16

)
Observe that the outside zero of the numerator in the (1, 1) element, which
characterize the ar part of the implied process, is larger than thee denomi-
nator zero (1.075), so the persistence arising from the ma part of the implied
process will be lower than that induced by the ar part. The invertible left
factor of H, which is simply the initial candidate factor generated by the
Cholesky factorization, is(

.855(z−1.470)
z−1.075 0

.855(z−.93)
z−.680

.296(z−2.686)
z−1.470

)
Multiply by a Blaschke factor from the right:(
.855(z−1.470)
z−1.075 0

.855(z−.93)
z−.680

.296(z−2.686)
z−1.470

)(
− z−.680

1−.680z 0

0 I

)
=

(
− .855(z−1.470)

z−1.075
z−.680
1−.680z 0

− .855(z−.93)
1−.680z

.296(z−2.686)
z−1.470

)
and with cancellation in the upper left element, .855

.680
(z−.680)

z−1.075 0
.855
.680

(z−.93)

z−1.47
.296(z−2.686)
z−1.470

 =

(
1.257(z−.680)
z−1.075 0

1.257(z−.93)
z−1.47

.296(z−2.686)
z−1.470

)

which has a zero but no poles. The transpose of this, which is the right
factor is,

F̄ =

(
1.257(z−.680)
z−1.075

1.257(z−.93)
z−1.47

0 .296(z−2.686)
z−1.470

)
Because of the zero, additional factorization is needed. First, we calculate
the constituent elements of the Θ matrix (the coefficient matrix from [2]):

A =
(
.68
)

B =
(
−.884 −.468

)
Ω =

(
1.86

)
yielding

Θ =

(
− .930(z−.494)

z−1.470 −1.022(z−1.0)
z−1.470

−1.022(z−1.0)
z−1.470

.459(z−2.025)
z−1.470

)
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The invertible factor is

Θ∗F̄ =

(
− .312(z−2.025)

z−.68 − .695(z−1.0)
z−.68

− .695(z−1.0)
z−.68

.632(z−.494)
z−.68

)(
1.257(z−.680)
z−1.075

1.257(z−.93)
z−1.47

0 .296(z−2.686)
z−1.470

)
=

(
.393(z−2.025)
z−1.075 .187

.874(z−1.0)
z−1.075 1.061

)
The inverse is

F̄−1 =

(
4.199(z−1.075)

z−1.075 − .739(z−1.075)
z−2.686

−3.452(z−1)
z−2.686

1.552(z−2.025)
z−2.686

)
We can write this as

F̄−1 =

(
4.199
z−1.075Φ−1 − .739

z−2.686Φ−1

−3.452(z−1)
z−2.686

1.552(z−2.025)
z−2.686

)
Inserting this into (68) yields

(69)

(
b
θ

)
=

(
c2J 0
0 Φ−1

)( 4.199
z−1.075Φ−1 − .739

z−2.686Φ−1

−3.452(z−1)
z−2.686

1.552(z−2.025)
z−2.686

)(
F̄11(r + a)−1Φ
F̄12(r + a)−1Φ

)
Clearly there will be several cancellations of the Φs. This yields

(70)

(
b
θ

)
=

(
c2J 0
0 I

)( 4.199
z−1.075 − .739

z−2.686

−3.452(z−1)
z−2.686

1.552(z−2.025)
z−2.686

)(
F̄11(r + a)−1

F̄12(r + a)−1

)
Remembering that F̄11(r+a)−1 and F̄12(r+a)−1 are constants, it is evident
that θ (the obfuscation coeffient) is not a constant:

θ = −F̄−1
11 (r + a)

3.452(z − 1)

z − 2.686
+ F̄−1

12 (r + a)
1.552(z − 2.025)

z − 2.686

which is an arma(1,1) transfer function. Thus, the large shareholder adds
persistence (mainly through the ar part) to the fundamental process.

We can be more explicit about the solution using the annihilator lemma
(using discrete time):

F̄ ∗−1
∣∣∣
z=a

=

(
4.199(.93−1.075)

.93−1.075 −3.452(.93−1)
.93−2.686

− .739(.93−1.075)
.93−2.686

1.552(.93−2.025)
.93−2.686

)
=

(
.347 −.138
−.0611 .967

)
Our equation is then

θ = −.347
3.452(z − 1)

z − 2.686
− .138

1.552(z − 2.025)

z − 2.686
= −1.41(z − 1.155)

z − 2.686

which is an arma(1,1) filter. Moreover, it does not cancel with Φ, and so
the effective fundamental process will be

(1− θ)Φ =
2.410(z − 1.790)

z − 2.686
Φ.

A slight variant of this example is discussed in the main text. [Figure 1
is for a slightly different case: the lower right element of the matrix to be
factored is 1.1 rather than 1.18.] As the adjustment cost is increased (not
shown), the amplification filter flattens out and shrinks.
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