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Nowcasting and forecasting global financial sector stress and

credit market dislocation

Abstract

We introduce a new international model for the systematic distress risk of financial

institutions from the U.S., the European Union, and the Asia-Pacific region. Our

proposed dynamic factor model can be represented as a nonlinear, non-Gaussian state

space model with parameters that we estimate using Monte Carlo maximum likelihood

methods. We construct measures of global financial sector risk and of credit market

dislocation, where credit market dislocation is defined as a significant and persistent

decoupling of the credit risk cycle from macro-financial fundamentals in one or more

regions. We show that such decoupling has in the past preceded episodes of systemic

financial distress. Our new measure provides a risk-based indicator of credit conditions

and as such complements earlier quantity-based indicators from the literature. In an

extensive comparison with such quantity-based systemic risk indicators, we find that

the new indicator behaves competitively to the best quantity-based indicators.

Keywords: financial crisis; systemic risk; credit portfolio models; frailty-correlated

defaults; state-space methods; distress indicators.

JEL classification: G21, C33



1 Introduction

We introduce an international modeling framework that can be used to construct measures of

global financial sector stress and new measures of credit market dislocation. Our framework

is based on a high-dimensional, partly nonlinear and non-Gaussian dynamic factor model in

state space form as introduced in Koopman, Lucas, and Schwaab (2012) and extended here to

the international context with an explicit focus on financial sector firms. We define financial

sector stress in terms of the time varying probability of the joint default of a large number

of currently active financial intermediaries in a given economic region. This definition of

financial stress is common in policy and academic work; see, for example, Segoviano and

Goodhart (2009), IMF (2009), and Giesecke and Kim (2011). Credit market dislocation, on

the other hand, we define as the situation where credit risk and default experience delink

from the underlying macro fundamentals. Our new modeling framework provides explicit

measurements for this quantity.

We present two main contributions. First, we provide a tractable framework for tracking

and analyzing the drivers of systematic credit risk conditions across different geographical

regions and industries. Except for the study of Pesaran, Schuermann, Treutler, and Weiner

(2006), such an international framework is currently largely missing. Historically, clusters

of bank defaults have almost invariably turned out to be very costly in real terms. For

example, Reinhart and Rogoff (2009, Chapter 10) conclude that a systemic banking crisis

in advanced economies from 1945 to 2006 has on average been followed by a 56% drop in

real equity prices, a 36% drop in real estate property prices, a 9% drop in real GDP, a 7%

increase in the unemployment rate, an 86% increase in the level of government debt, and a

16% drop in sovereign rating scores, during three years following such a crisis. In the same

chapter, Reinhart and Rogoff also stress that each of the ‘big five’ systemic banking crises

in advanced economies since World War II (Spain, 1977; Norway, 1987; Japan, 1992; and

Finland and Sweden, 1997) has been preceded by a credit boom and an associated increase

in asset prices. Both historical observations, i.e., the high cost of crises in real terms as well
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as the role of credit markets during the years leading up to the crisis, have been confirmed

since then; see the banking crises since 2007 in countries such as Ireland, Spain, and the

U.S. As a result, tracking credit market activity over time, which includes credit quantities

as well as time-varying systematic credit risk conditions, seems a sensible starting point for

financial stability policy analysis at the macro level. A tractable framework for such an

analysis is indispensable, which is precisely why we develop such a framework in this paper.

Second, we analyze new measures of credit market dislocation. These measures pick up

a significant and persistent decoupling of systematic credit risk conditions (the credit cycle)

from macro-financial fundamentals (the business cycle). For example, credit risk conditions

can be very different during a credit boom from what they are expected to be based on

macro-financial covariates. In a credit boom, even bad risks have ample access to credit

and can thus avoid or delay default. Consequently, bad risks default less than what would

otherwise be expected. Conversely, credit risk conditions may deviate from macro conditions

in a credit crunch, when even financially healthy firms find it hard to roll over their debt,

thus raising their risk of funding illiquidity. To our knowledge, the connection between

ease of credit access and physical credit risk conditions was first argued informally in Das,

Duffie, Kapadia, and Saita (2007), and then more formally in theoretical and empirical

models such as, for example, Duffie, Eckner, Horel, and Saita (2009), He and Xiong (2012)

and Koopman, Lucas, and Schwaab (2012). It is a recurring finding in the portfolio credit

risk literature that easily observed macro-financial covariates and firm-specific information,

while helpful, are not sufficient to fully explain time-varying systematic credit risk; see, for

example, Das, Duffie, Kapadia, and Saita (2007), Koopman, Lucas, and Monteiro (2008),

Duffie, Eckner, Horel, and Saita (2009), Koopman, Kräussl, Lucas, and Monteiro (2009),

Azizpour, Giesecke, and Schwenkler (2010), and Koopman, Lucas, and Schwaab (2011). In

this study we document that a decoupling of systematic credit risk conditions from macro

fundamentals has in the past preceded macroeconomic and financial distress in both U.S. and

non-U.S. data for both financial and non-financial firms. We estimate such decoupling using

our state space model and transform it into an indicator. We compare the performance of
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this risk-based indicator with a number of more traditional quantity-based measures of credit

market conditions and risk. The new indicator has a robust and competitive performance in

comparison to other quantity-based measures but also provides a complementary perspective.

Our work is related to two different strands of literature. First, we relate our empirical

study to the fast growing literature on the construction of financial sector risk measures;

see, for example, Adrian and Brunnermeier (2009), Huang, Zhou, and Zhu (2009), Acharya,

Pedersen, Philippon, and Richardson (2010), Brownlees and Engle (2010), Billio, Getmansky,

Lo, and Pelizzon (2012), and Moreno and Pena (2013). From a more systemic perspective,

financial firm defaults are much worse if they occur in clusters. What seems manageable

in isolation may not be easily dealt with if the entire system is under stress; see Acharya

et al. (2010). Systemic risk is a multi-faceted notion, and can be broadly defined as a

set of circumstances that threatens the stability of, or public confidence in, the financial

system, as in Billio et al. (2012). A cluster of simultaneous financial firm defaults typically

shakes the public confidence in the financial system. Tracking the probability of widespread

‘meltdown’, based on a large cross section of financial firms that constitute the financial

system, has therefore a clear role in a prudential financial sector surveillance program.

The construction of financial sector risk measures at any point in time is a challenging

task. The analysis requires a large cross section of financial firms for which the time-varying

marginal risk levels are unobserved. These risks need to be inferred from available data at any

given point in time. For example, Segoviano and Goodhart (2009) adopt a copula perspective

to link together the default of several financial institutions. Their approach is partly non-

parametric, whereas our framework is parametric. However, our parametric framework lends

itself more easily to extensions to high dimensions, i.e., a large number of individual financial

institutions. This is practically impossible in the Segoviano and Goodhart (2009) approach

due to the non-parametric characteristics. Extensions to higher dimensions is a relevant

issue in our current study, as we take a, literally, global perspective of the financial system.

Another paper related to our work is Giesecke and Kim (2011). These authors take a

hazard rate approach with contagion and observed macro-financial factors (no frailty). In
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contrast to their model setup, our mixed-measurements framework allows us to model the

macro developments and default dynamics in a joint factor structure. Giesecke and Kim,

by contrast, take the macro data as exogenous regressors in their analysis. Also, our study

explicitly incorporates the global dimension, and looks beyond coincident indicators of risk.

Second, we relate our work to the research in the development of measurements of point-

in-time credit risk conditions. It is generally viewed as a challenging task since all processes

that determine corporate default and financial sector stress are not easily observed. Recent

research indicates that readily available macro-financial variables and firm-level information

may not be sufficient to capture the large degree of default clustering present in corporate

default data; see, for example, Das et al. (2007). In particular, there is substantial evidence

for an additional dynamic unobserved ‘frailty’ risk factor as well as contagion dynamics; see

McNeil and Wendin (2007), Koopman et al. (2008), Koopman and Lucas (2008), Duffie et al.

(2009), Lando and Nielsen (2010), and Azizpour et al. (2010). ‘Frailty’ and contagion risk

cause default dependence above and beyond what is implied by observed covariates alone.

In our current study we analyse credit risk conditions from an international perspective.

Research studies that focus on extracting frailty risk effects in non-U.S. credit risk data

are not widespread. The influential study of Pesaran, Schuermann, Treutler, and Weiner

(2006) does follow an international perspective on global time-varying macro and credit risk

conditions. Although our current study has a similar aim, it is different in four ways: (i) our

credit risk measures are decomposed in macro, frailty, and industry effects; (ii) the econo-

metric analysis relies on simulation-based state space methods; (iii) our focus is on financial

sector risk instead of stress testing globally active lending institutions; (iv) we provide a

unified framework to integrate risk information from different data sources. With respect

to this last point, our data set includes information on macroeconomic and financial market

conditions, equity markets and balance sheet information (via expected default frequencies,

EDFs), and actual defaults. In particular, EDF data is helpful in our current context. The

default counts in the financial sector are rather low and lead to substantial model risk. In

such situations EDF data can help to amplify the signal on systematic financial sector risk.
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The remainder of this paper is organized as follows. Section 2 introduces the modeling

framework and financial sector risk measures. Section 3 describes the data. Section 4

discusses the empirical results. Section 5 concludes. The Appendix contains some details

on the estimation procedure and diagnostic checks. We also provide a web appendix with

additional methodological details and with further empirical results.

2 The modeling framework

2.1 Mixed-measurement dynamic factor models

We consider the following tri-part data structure

xt = (x1,1,t, . . . , x1,N1,t, . . . , xR,1,t, . . . , x1,NR,t)
′ , (1)

yt = (y1,1,t, . . . , y1,J1,t, . . . , yR,1t,, . . . , yR,JR,t)
′ , (2)

zt = (z1,1,t, . . . , z1,S1,t, . . . , zR,1,t, . . . , zR,SR,t)
′ , (3)

where xr,n,t represents the nth, n = 1, . . . , Nr, macroeconomic or financial markets variable

for region r = 1, . . . , R measured at time t = 1, . . . , T ; yr,j,t is the number of defaults

between times t and t+ 1 for economic region r and cross section j = 1, . . . , Jr; and zr,s,t is

the expected default frequency (EDF) of financial firm s = 1, . . . , Sr in economic region r at

time t. Cross section j can represent different categories of firms, such as industry sectors,

rating categories, firm age cohorts, or a combination of these. The model thus includes more

‘standard’, possibly normally distributed macro and financial markets variables xt, but also

count variables yt and variables zt that are bounded to the [0,1] interval. The panel for

(xt, yt, zt) is typically unbalanced so that variables may not be observed at all times.

Rather than only using historical firm default data yt for measuring financial sector credit

risk, we also use EDF data zt for financial firms in our current study. This makes up for a clear

lack of historical default experience for such firms in typical data sets such as those of Moody’s

or S&P. For example, in our empirical sample later on, we count only 12 defaults for European

financial firms. EDFs are proprietary estimates of physical time-varying default probabilities
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and are based on structural models for credit risk that integrate information from accounting

data (via debt levels) and equity markets (via prices and volatilities). Therefore, they are

less prone to the criticism that the estimates also embed a strong risk premium component,

as it would be the case if, for example, CDS spread data were used instead. EDF data,

along with associated distance-to-default measures, are standard conditioning variables in

the credit risk literature; see, for example, Duffie, Saita, and Wang (2007), Bharath and

Shumway (2008), and Duffie et al. (2009).

To integrate the different types of variables xt, yt, and zt in one unifying framework, we

assume that all variables are driven by a vector ft of common dynamic factors. We adopt a

standard conditional independence assumption: conditional on the common risk factors ft,

the measurements (xt, yt, zt) are independent over time and in the cross section. We make

the following modeling assumptions:

xr,n,t|fm
t ∼ Gaussian

(
µ̃r,n,t, σ̃

2
r,n

)
, (4)

yr,j,t|fm
t , f

d
t , f

i
t ∼ Binomial (kr,j,t, πr,j,t) , (5)

z̄r,s,t|fm
t , f

d
t , f

i
t ∼ Gaussian

(
µ̄r,s,t, σ̄

2
r,s

)
, z̄r,s,t = ln(zr,s,t/(1− zr,st)), (6)

with

πr,j,t =
(
1 + e−θr,j,t

)−1
, (7)

µ̃r,n,t = c̃r,n + β̃′
r,nf

m
t , (8)

θr,j,t = λr,j + β′
r,jf

m
t + γ′r,jf

d
t + δ′r,jf

i
t , (9)

µ̄r,s,t = c̄r,s + β̄′
r,sf

m
t + γ̄′r,sf

d
t + δ̄′r,sf

i
t , (10)

where the common risk factor f ′
t = (fm′

t , fd′
t , f

i′
t ) is partitioned in a component capturing

macro-financial risks fm
t , default specific (frailty) risk fd

t , and industry risk f i
t . The industry

factors f i
t may arise as a result of default dependence through up- and downstream business

links, and may capture the industry-specific propagation of aggregate shocks. The set of

parameters include c̃r,n, β̃r,n, σ̃
2
r,n, λr,j, βr,j, γr,j, δr,j, c̄r,s, β̄r,s, γ̄r,j, δ̄r,j and σ̄2

r,s which are

fixed and need to be estimated.
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Although the model appears rather complex due to the combination of continuous and

discrete data under a unifying factor structure, the model’s components are straightforward

to interpret. The macro-financial data xnt follow a conditional (on ft) standard Gaussian

distribution where the means depend linearly on the macro risk factors fm
t . The default

counts yr,j,t, by contrast, follow a conditional binomial distribution with probability of default

πr,j,t and number of exposures kr,j,t, where the latter are observed directly from the data.

The probabilities of default πr,j,t are standard logistic transformations of a baseline level λr,j

and linear combinations of both the macro-financial (fm
t ), default specific (fd

t ), and industry

(f i
t ) risk factors. Finally, the log-odds transformed EDF data z̄r,s,t follow a conditional

normal distribution with the mean depending on all components of ft. The default specific

and industry factors thus absorb any time-variation in default rates and EDFs above and

beyond what is already captured by the macro-financial factors fm
t .

The model is completed by postulating a time-series model for the risk factors ft. We

assume that the elements of ft have independent autoregressive dynamics,

ft = Φft−1 + ηt, ηt ∼ NID (0,Ση) , (11)

where the coefficient matrix Φ is diagonal, covariance matrix Ση is positive definite, and

f1 ∼ N(0,Σ0). Extensions to more complex dynamic structures are straightforward. The

autoregressive structure in (11), however, already allows for sufficient stickiness in the com-

ponents of ft given the data at hand. For example, it allows the macroeconomic factors

fm
t to evolve slowly over time and to capture shared business cycle dynamics in macro and

default data. Similarly, the credit climate and industry default conditions are modeled as

persistent processes fd
t and f i

t , respectively. The disturbance vector ηt is serially uncorre-

lated. To ensure the identification of the factor loadings β̃r,n, βr,j, β̄r,s, γr,j, γ̄r,s, δr,j, and

δ̄r,s, we impose Ση = I − ΦΦ′. It implies that E[ft] = 0, Var[ft] = I, and Cov[ft, ft−h] = Φh,

for h = 1, 2, . . .. As a result, the loading coefficients in (9) can be interpreted as risk factor

volatilities (standard deviations) for the firms in cross section j for region r.

The above model (4)–(11) extends the factor model structure for partly nonlinear and
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non-Gaussian panel data as introduced in Koopman, Lucas, and Schwaab (2011, 2012) to

the international setting. This allows us to study systematic credit risk dynamics and their

inter-regional linkages. In particular, the model can be used to obtain estimates of the

unobserved risk factors ft, which can then be used to construct coincident risk indicators

and early warning signals. This is explained in more detail in the next subsections.

As the model is rich in parameters, we impose pooling and normalization restrictions

to obtain a more parsimonious representation, while still allowing for sufficient flexibility to

describe the data well. First, we link the log odds ratios θr,j,t and µ̄r,s,t such that θr,j,t − λr,j

and µ̄r,s,t − c̄r,s are proportional. This makes economic sense, as (9) and (10) relate the

log-odds of the (discrete) default counts and of the (continuous) EDF data for the same

industry-region combination to the same underlying financial distress factors fd
t and f i

t .

Second, we normalize the xr,n,t and z̄r,s,t variables to have zero mean and unit variance, such

that we can impose c̃r,n = c̄r,s = 0. This further reduces the overall number of parameters

that need to be estimated. The implied variance matrices for the Gaussian measurements

(4) and (6) are assumed to be diagonal. Finally, we follow Koopman and Lucas (2008)

and impose an additive structure on the parameters that are cross section and region pair

specific, such as

βr,j = βc
0 + βc

1,dj
+ βc

2,rj
+ βc

3,sj
, (12)

where βc
0 is the baseline effect, βc

1,d is the industry-specific deviation, βc
2,r is a deviation

related to regional effects, and βc
3,s is a deviation related to rating group. Similar additive

structures are assumed for other coefficients. As usual, some of the dummy effects in (12)

have to be omitted for identification. We refer to Section 4.1 for more details.

2.2 Parameter and risk factor estimation by simulation methods

The mixed measurement dynamic factor model presented in the previous section is an ex-

tension of the non-Gaussian measurement state-space models as discussed in Shephard and

Pitt (1997) and Durbin and Koopman (1997) to modeling observations from different fam-
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ilies of parametric distributions. A local version of the model for U.S. default counts was

estimated in Koopman, Lucas, and Schwaab (2012). The current inter-regional version that

also includes the EDF data is more extensive to estimate, but uses a similar estimation set-

up as for the local model. We therefore keep the present methodology discussion short and

non-technical, referring to Koopman et al. (2012) and the Appendix for further details. The

web appendix to this paper gives details on the treatment of missing values in the current

data set.

The model relies on a parameter vector ψ that contains the coefficients in Φ, β̃r,n, λr,j,

βr,j, γr,j, δr,j, β̄r,s, γ̄r,s, and δ̄r,s. This parameter vector is estimated by the method of

simulated maximum likelihood. Since the model contains unobserved components ft and

our dynamic factor model is partly non-Gaussian, the likelihood function is not available in

closed form. Instead, we have to integrate out all unobserved components from the joint

likelihood for ψ and ft. To evaluate this high-dimensional integral, numerical integration

is computationally infeasible. Therefore, we rely on Monte Carlo simulation methods for

evaluating the likelihood function. We refer to Koopman et al. (2012) and the Appendix for

details on our simulation based estimation procedure for mixed measurement panel data.

2.3 Measures of financial sector stress

Using the mixed measurement model set-up of Section 2.1, we can easily construct estimates

of financial sector stress for a specific region or combination of regions based on the model’s

parameter estimates and estimated risk factors ft. Such measurements automatically inte-

grate the effects of macro, frailty, and industry effects as represented in ft. Systematic risk

due to shared exposure to the common risk factors ft cannot be diversified in a large cross

section. Therefore, these factors constitute the main drivers of the time-varying risk of joint

financial firm defaults.

Our coincident measures of risk all summarize the information on the time-varying (con-

ditional) probability of default πr,j,t. The most straightforward indicator is the model-implied

financial sector expected failure rate EFRr,j,t = πr,j,t itself, which can be interpreted as the
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fraction of firms of type j at time t in region r that are expected to fail over the next three

months. High failure rates imply high levels of common financial distress, and thus a higher

risk of adverse effects on the real economy through financial firm defaults. The measure

can be aggregated across sectors or even regions using, for example, an exposure-weighted

average, such as

EFRr,j′,t =

( ∑
j∈j′, r∈r′

kr,j,t

)−1 ∑
j∈j′, r∈r′

kr,j,tπr,j,t, (13)

where j′ and r′ collect the cross sections and regions of interest.

A second straightforward measure that is directly derived from πr,j,t is the joint proba-

bility of default (JPoD). The joint probability of default can easily be constructed from the

binomial cumulative distribution function and the time-varying financial sector failure rates.

For example, the joint probability of default of at least n∗ firms of type j at time t in region

r is given by

JPoDr,j,t(n
∗) = 1−

n∗−1∑
n=0

Binomial (n; kr,j,t, πr,j,t) , (14)

where the Binomial(·) is the binomial probability mass function. Naturally, a high joint

probability of default indicates adverse financial conditions.

A final coincident indicator is the probability integral transform of the log-odds ratio

θr,j,t in (9), where θr,j,t = log(πr,j,t) − log(1 − πr,j,t) and where πr,j,t is a probability of

default. Equation (9) implies that θr,j,t is a linear combination of normally distributed

random variables, and thus itself normally distributed. The probability integral transform

is

SSSr,j,t = N
(
(θr,j,t − E(θr,j,t))/Var(θr,j,t)

1/2
)
, (15)

where E(θr,j,t) = λr,j, is the unconditional mean of the log-odds ratio, Var(θr,j,t) = β′
r,jβr,j +

γ′r,jγr,j+δ
′
r,jδr,j ≥ 0 is the unconditional variance of θr,j,t, and N(·) is the standard normal cdf.

We refer to the transform as (re)scaled systematic stress (SSS). Values of SSSr,j,t lie between

0 and 1 by construction with uniform unconditional probability. Values below 0.5 indicate

less-than-average (over time) common default stress, while values above 0.5 indicate above-

average stress. Values below 20%, say, are historically exceptionally benign, and values above
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80% are indicative of substantial systematic stress. Such a historical comparison of stress

levels is useful because different financial stability concerns are relevant in different economic

environments. Policy makers want to mitigate the buildup of financial imbalances such as

asset and credit bubbles; this is particularly a concern during good times; see Borio (2010).

Conversely, mitigating a credit crunch due to financial sector deleveraging is a concern in

particular when financial sector stress is high. Our measure of financial stress is obtained

when (15) is applied to model-implied failure rates for financial firms in a given region or

block of regions.

2.4 Credit risk deviations

Severe financial bubbles, such as the dot-com asset bubble from approximately 1997-2000

and the credit and real estate bubble in the United States from approximately 2005-2007,

occurred when perceptions regarding financial sector risk were below average and even un-

usually low; see, for example, Aoki and Nikolov (2012) and Boissay, Collard, and Smets

(2013). This is in line with the “financial stability paradox” of Borio (2010, 2011) and the

“volatility paradox” of Brunnermeier and Sannikov (2013), which state that the financial

sector looks strongest precisely when risk taking is peaking and the sector as a whole is the

most vulnerable. During such times, credit growth and asset prices are unusually strong,

leverage measured at market prices is artificially low, and also risk premia and volatilities

are unusually low. What looks like low risk, however is in fact a sign of aggressive risk-taking

by market participants. If the financial stability paradox applies, then an early warning in-

dicator must, perhaps counter-intuitively, not flag model-implied risk, but flag the apparent

absence of it and quantify deviations from where risk ‘should be’ based on fundamentals.

This section presents such a risk deviation measure.

The coincident risk indicators introduced in the previous subsection take account of all

credit risk factors in ft. However, the structure of our model allows us to make a distinction

between the macro factors fm
t and the other factors (fd

t , f
i
t ). In particular, the factors fd

t

and f i
t provide a signal whether local default experience in a particular industry and region
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is unexpectedly different from what would be expected based on macro fundamentals fm
t .

As such, the two factors can be combined to measure a decoupling of credit risk conditions

from their macro-financial fundamentals. This can easily be done by constructing a ‘credit

risk deviations’ (CRD) early warning indicator, defined as

CRDr,j,t = (γ′r,jf
d
t + δ′r,jf

i
t )/
√
γ′r,jγr,j + δ′r,jδr,j. (16)

This indicator is standard normally distributed, such that we can easily assess whether it

is unexpectedly high or low during a specific time period. Section 4 reports and discusses

the CRD indicator in more detail for the data at hand. In particular, we demonstrate that

major deviations of credit risk conditions from what is implied by standard macro-financial

fundamentals have in the past preceded financial and macroeconomic distress.

3 Default risk data and macro-financial covariates

We use quarterly data from three main sources. First, a panel xr,n,t of macroeconomic and

financial time series data is taken from Datastream with the aim to capture international

business cycle and financial market conditions. We pick macro-financial covariates that are

usually stressed in a macro stress test; see, for example, CEBS (2010) and Tarullo (2010).

The macro panel consists of business cycle indicators (real GDP, industrial production, unem-

ployment rate, and an industrial confidence indicator such as the ISM purchasing managers

index), price data (inflation, stock market returns), short term and long term interest rates

(implicitly the term structure), as well as residential property prices. These variables are

included in the macro panel for both the U.S. and Europe, which yields 2×9 = 18 variables.

To proxy business cycle conditions in the Asia-Pacific region, we include real GDP data for

Japan, South Korea, and Australia. This yields 21 macroeconomic variables in total. We

refer to the web appendix for a detailed listing and time series plots of the macro data.

The covariates enter the analysis as quarterly growth rates from 1980Q1 to 2012Q2, and are

available at a quarterly frequency.
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Table 1: International default and exposure counts
The table reports total default counts

∑
t yr,j,t that are disaggregated across economic region, industry

sector, and rating group. Exposure counts kr,j,t are reported for selected points in time at ten year intervals.

Region Industry Rating Defaults Exposures Exposures Exposures Exposures
sector group 1980Q1 1982Q2 1992Q2 2002Q2 2012Q2

to 2012Q2
U.S. fin IG 9 102 230 439 321

SG 102 11 66 81 89
non-fin IG 20 828 819 1009 731

SG 1375 305 546 1068 1264

E.U. fin IG 8 7 136 359 325
SG 12 0 3 8 62

non-fin IG 2 14 127 428 480
SG 115 0 6 168 304

A.P. fin IG 1 1 87 117 159
SG 15 0 3 34 51

non-fin IG 0 8 71 250 245
SG 68 0 0 66 65

The second dataset is constructed from default and exposure data from Moody’s. The

database contains rating transition histories and default dates for all rated firms (worldwide)

from 1980Q1 to 2012Q2. From these data, we construct quarterly values for yr,j,t and kr,j,t

in (5). We distinguish default data from three three economic regions. We first collect firm

and default data from firms headquartered in the United States. The E.U. region consists

of the 27 current member states of the European Union plus Switzerland. The Asia-Pacific

region is defined as the respective rest of the world, excluding Africa and the Americas.

Figure 1 plots aggregate default counts, exposures, and observed fractions over time for each

economic region. When counting exposures kr,j,t and corresponding defaults yr,j,t, a previous

rating withdrawal is ignored if it is followed by a later default. In this way, we limit the

impact of strategic rating withdrawals. If there are multiple defaults per firm, we consider

only the first event. We use Moody’s broad industry classification to distinguish between

financial and non-financial firms. Table 1 provides an overview over the default and exposure

counts. Data is most abundant for the U.S., with European countries second. Firms are

classified into the financial or non-financial sector, and rated either investment grade (IG)

or speculative grade (SG).

For financial firms, we add data from a third dataset on expected default frequencies
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Figure 1: Actual default experience
We present time series plots of (a) the total default counts

∑
j yr,j,t aggregated to a univariate series, (b)

the total number of firms
∑

j kr,j,t in the database, and (c) aggregate default fractions
∑

j yr,j,t /
∑

j kr,j,t

over time. We distinguish different economic regions: the United States, the European Union area, and the

Asia-Pacific region. Data is from 1980Q1 to 2012Q2.
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Figure 2: Expected Default Frequencies (EDFs) of large financial institutions
We plot EDF panel data for 55 large global financial firms from Moody’s KMV. The sample includes the

largest 20 U.S. (series 1–20), EU-27 (series 21–40), and rest of the world (series 41–55) financial firms,

respectively. The raw data sample is from 1990Q1 to 2012Q2.
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for 55 large (based on 2008Q4 market cap) financial firms in the United States, European

Union area, and Asia-Pacific region. The data are taken from Moody’s KMV CreditEdge.

The 20 + 20 + 15 = 55 expected default frequency series zr,s,t are based on a firm value

model that takes equity values and balance sheet information as inputs. We use the zr,s,t

data to augment our relatively sparse data on actual defaults yr,j,t for financial firms. Table

2 lists the identities of the financial firms whose EDF time series data is included in the

default risk panel for our empirical analysis. Figure 2 plots EDF panel data for large global

financial firms. In the graph we inferred missing values using the EM algorithm of Stock and

Watson (2002) to obtain a balanced panel. The figure clearly features the different periods of

financial distress, both around the early 1990s recession and the burst of the dotcom bubble

in the early 2000s, but particularly during the recent financial crisis.
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Table 2: EDF listing
Financial firms whose EDF time series data is included in the default risk panel for our empirical analysis.

U.S. Europe Asia-Pacific
AFLAC INC ALLIANZ SE AUSTRALIA AND NEW ZL BANKING GRP
ALLSTATE CORP ASSICURAZIONI GENERALI BANK OF CHINA LTD
AMERICAN EXPRESS CORP AXA CHEUNG KONG (HOLDINGS) LTD
AMERICAN INTERNATIONAL GRP BBVA SA CHINA CONSTRUCTION BANK
BANK OF AMERICA CORP BANCO SANTANDER SA COMMONWEALTH BANK OF AUSTRALIA
BANK OF NEW YORK MELLON BARCLAYS PLC HANG SENG BANK LTD
CITIGROUP INC BNP PARIBAS HSBC HOLDINGS PLC
GOLDMAN SACHS GROUP INC CREDIT AGRICOLE SA IND & COMRCL BANK OF CHINA
JPMORGAN CHASE & CO CREDIT SUISSE GROUP AG MITSUBISHI UFJ FINANCIAL GRP
LOEWS CORP DEUTSCHE BANK AG MIZUHO FINANCIAL GRP
MASTERCARD INC HSBC HOLDINGS PLC NATIONAL AUSTRALIA BANK LTD
METLIFE INC ING GROEP N.V. SBERBANK ROSSEII
MORGAN STANLEY INTESA SANPAOLO SPA SUMITOMO MITSUI FINANCIAL
PRUDENTIAL FINANCIAL INC KBC GROUP NV TOKIO MARINE HOLDINGS INC
SCHWAB (CHARLES) CORP ROYAL BANK OF SCOTLAND WESTPAC BANKING CORP
STATE STREET CORP SOCIETE GENERALE
TRAVELERS COS INC STANDARD CHARTERED PLC
U S BANCORP UBS AG
VISA INC UNICREDIT SPA
WELLS FARGO & CO ZURICH FINANCIAL SERVICES

4 Empirical results

4.1 Model specification

Since we focus almost exclusively in our current paper on financial sector risk, we pool the

parameters over all non-financial sectors. Firm-specific ratings are either investment grade

or speculative grade. Risk factor sensitivities, however, are allowed to be different across

geographical regions and between the financial and non-financial sector.

For the selection of the factor structure we rely on likelihood-based information criteria

(IC). Based on standard criteria such as likelihood, AIC, BIC, and the panel information

criteria of Bai and Ng (2002), two or three macro factors are appropriate to summarize

the information content in the macro panel. We include three macro factors in our final

specification to be conservative and to not bias our results in favor of credit specific (frailty)

factor effects.

Allowing for one frailty factor is standard in the literature; see, for example, Duffie et al.

(2009) and Azizpour et al. (2010), and appears sufficient to capture deviations of credit from

macro conditions when modeling defaults. Since we have three different regions, we allow

for three region-specific frailty factors. Finally, we allow for one industry-specific factor for

financial firms. The latter loads on financial firms from all regions but may do so possibly to
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different degrees. The three macro-financial factors fm
t are common to all macro covariates,

thus taking into account the positive correlation between, say, U.S. and European conditions

that may result from macroeconomic linkages and financial cross-holdings.

We refer to the Appendix A2 for further diagnostic checks for the chosen model specifi-

cation. The diagnostic checks suggest that, while restrictive, this specification is sufficiently

flexible to accommodate most of the heterogeneity observed across regions and industries for

the purpose at hand.

4.2 Financial sector systematic risk: parameter estimates and

variance decomposition

Observed default fractions and EDF data for financial sector firms suggest that systematic

default rates are up to ten times higher in bad times (say, 1988-90 and 2008-09 in the U.S.)

than in good times (say, 1996-97 and 2005-06 in the U.S.). This is striking. To explain why

financial firm defaults cluster so dramatically over time, we relate financial sector systematic

risk to its underlying latent risk drivers and investigate which factors contribute most to the

model’s explanatory power.

The parameter estimates in Table 3 indicate that macro, frailty, and industry effects are

all important for international credit risk and financial sector risk conditions. The estimates

of the βk,r,j coefficients, for macro factors k = 1, . . . , 3, reveal that defaults from all regions

and industries load on the common factors from global macro-financial data. This finding

alone implies a considerable degree of default clustering. The common variation with macro

data, however, is not sufficient. Frailty effects are also found to be important in all regions

(γr,j coefficients). Moreover, the financial industry-specific factor also loads significantly

on data from all regions (δr coefficients). The large amount of common variation in risk

dynamics for financial firms across regions is intuitive. These groups operate globally both

in terms of their lending and funding activities, and are exposed to highly interdependent

financial markets around the globe.
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Table 3: Parameter estimates
We report the maximum likelihood estimates of selected coefficients in the specification of the log-odds ratio

(9) with parameterization (12) for λr,j and βr,j . Coefficients λr,j combine to fixed effects, or baseline failure

rates. Factor loadings βr,j , γr,j , and δr refer to three macro factors fm
t , three region-specific frailty factors

fd
t , and a financial industry specific risk factor f i

t , respectively. The macro factors are common to all macro

and default data across regions. As a result, U.S. macroeconomic conditions may affect the E.U. area and

the Asia-Pacific (A.P.) region, and vice versa. The frailty factors load on financial and non-financial firms’

defaults in a respective region. The estimation sample is from 1980Q1 to 2012Q2. The model has k = 1, . . . , 3

macro factors, three default risk specific factors (one for each region), and an industry-specific factor for the

financial industry.

Intercepts Loadings macro factor Loadings frailty and
fm
k,t, k = 1, ..., 3 industry factor fd

t , f
i
t

λr,j= λc
0+λc

1,j+λc
2,r+λc

3,s βk,r,j= βc
k,0+βc

k,1,j+βc
k,2,r γr= γc

0,r

par val t-val
λc
0 -4.66 10.12

λc
1,fin 0.00 0.02

λc
2,EU -0.32 1.31

λc
2,AP -0.82 1.72

λc
3,IG -4.18 5.72

par val t-val
βc
1,0 -0.27 4.22

βc
1,1,fin 0.29 4.73

βc
1,2,EU 0.07 0.71

βc
1,2,AP 0.22 1.20

βc
2,0 0.21 5.36

βc
2,1,fin -0.10 2.80

βc
2,2,EU 0.09 1.79

βc
2,2,AP 0.20 1.95

βc
3,0 -0.15 2.40

βc
3,1,fin -0.03 0.59

βc
3,2,EU 0.16 1.83

βc
3,2,AP -0.04 0.25

par val t-val
γc
0,US 0.35 5.32

γc
0,EU 0.45 2.52

γc
0,AP 0.87 2.93

δr = δc0,US + δc1,r

δc0,US 0.28 4.15
δc1,EU 0.17 1.41
δc1,AP 0.75 1.87
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Table 4: Variance decomposition into macro, frailty, and industry effects
We report the results of a variance decomposition of transformed systematic default rates for financial

sector firms in three economic regions. The unconditional variation in θr,j,t = log(πr,j,t) − log(1 − πr,j,t) is

attributed to three sources of stress. Each source of stress is captured by a corresponding set of latent factors

and associated risk factor standard deviations. The respective variance shares are smr,j = β′
r,jβr,j/Var(θr,j,t),

sdr,j = γ′
r,jγr,j/Var(θr,j,t), and sir,j = δ′r,jδr,j/Var(θr,j,t), where Var(θr,j,t) = β′

r,jβr,j + γ′
r,jγr,j + δ′r,jδr,j ≥ 0,

where r, j pick the appropriate cross section of financial firms. The estimation sample is from 1980Q1 to

2012Q2.

Changes in observed
macro-financial conditions

smr,fin

Latent default-
specific dynamics

sdr,fin

Latent financial
sector dynamics

sir,fin
U.S. 18% 50% 32%
E.U. area 11% 44% 45%
Asia-Pacific region 10% 38% 52%

Table 4 attributes the variation in the (Gaussian) log-odds of financial sector failure

rates to three primary risk drivers, i.e., changes in macro-financial conditions, frailty risk

for all firms (financial and non-financial), and financial sector-specific dynamics. These

drivers are associated with the vectors of latent factors fm
t , fd

t , and f i
t , respectively. The

relative importance of each source of variation can be inferred from the estimated risk factor

loadings. Given that each risk factor is unconditionally standard normal, the factor loading

is the estimated risk factor volatility (standard deviation) by construction.

Table 4 indicates that industry-specific variation and frailty dynamics are the most im-

portant sources of financial sector systematic default risk. This is likely due to a particularly

important role for contagion and network effects in this sector. Changes to joint macro-

financial and default conditions are not a dominant driver of financial distress: macro factors

fm
t are found to explain less than 20% of the total variation in financial sector systematic

default risk. As an important caveat, the factor loading parameters are estimated with little

precision from rare data on actual financial sector defaults (111 in the U.S., 20 in the E.U.,

and 16 in Asia-Pacific sub-samples). In addition, the variance shares can vary somewhat

with changes in model specification and parameter pooling restrictions. We can conclude,

however, that all three sources of risk, in particular frailty and industry-specific dynamics,
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should be accounted for in an overall risk assessment framework.

4.3 Tracking global financial sector stress over time

This section discusses our in-sample empirical estimates of unobserved financial sector stress

based on the the risk indicators defined in Section 2.3. We distinguish financial sector firms

located in the U.S., Europe (E.U. area), and Asia-Pacific region as explained in Section 3.

Figure 3 plots model-implied financial sector default rates as in equation (13). The

model-implied default rate is the share of overall intermediaries that can be expected to

default over the next three months. Multiplying this rate by four gives an approximate

annual rate. High probabilities of default are visible in the left panel for the U.S. during the

recession years of 1991, 2001, and acute financial crisis from 2008-10. For European financial

firms, the euro area debt crisis from 2010-12 at the end of the sample is particularly stressful.

Model-implied stress for European intermediaries is lower than for U.S. financials for most of

the sample pre-2010. This is partly due to sample composition, as rated European financials

that access the capital markets tend to have a high credit rating on average, and observed

historical default frequencies are low.

Figure 3 further compares the model-implied default rate (solid line) with a mean ex-

pected default frequency (EDF) estimate from Moody’s KMV (dashed line) and ex-post

realized quarterly default fractions (symbols). The Moody’s database contains both rated

banks as well as non-bank financial firms, such as insurers and real estate firms. Our Moody’s

KMV rate average EDF is built on about twenty large financial firms and thus refers to a

much more limited base.

The simultaneous default of multiple financial sector firms is a relatively rare event, but

with potentially a large impact if the event materializes. The top three panels of Figure 4

plot the probability of at least k% financial firms failing over a one year horizon (vertical

axis), as a decreasing function of k. The model implied probabilities are computed over the

period 1985Q1 to 2012Q2 (horizontal axis). The three-dimensional graphs roughly follow

what is implied by the aggregated failure rate for the financial sector as plotted in Figure
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Figure 3: Implied default rate for financial sector firms
The panel plots the estimated default hazard rate πr,j,t for financial sector firms in the United States,

European Union area, and Asia-Pacific region, respectively. The panels compare the model-implied rates

with the mean expected default frequencies for a smaller number of large financial firms in each region, and

observed default fractions from the default count data panel. The estimate is a quarterly rate, multiplying

by four gives an approximate annual rate. The estimation sample is from 1980Q1 to 2012Q2.
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Figure 4: Probability of financial sector firm joint defaults
The top three graphs plot the probability of a simultaneous failure of k% or more financial firms over

a one year period in the U.S., the E.U. area, and the Asia-Pacific region, respectively. The horizontal

axis measures time from 1985Q1 to 2012Q2. The vertical axis measures the time-varying probability as

a decreasing function of k. The bottom three panels report slices through the above three-dimensional

plots along the time dimension, and refer to financial firms headquartered in the U.S., the E.U., and the

Asia-Pacific region, respectively.
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Figure 5: PIT transform of financial sector systematic default rate
The figure plots the probability integral transform (15) for financial firm systematic default risk in the U.S.

(top panel) and the E.U. and Asia-Pacific region (bottom panel). The probit transformation of the log-odds

ratio implies that percentiles of systematic stress can be read off the y-axis. Two horizontal lines at 20% and

80% indicate when estimated systematic stress for financial firms is particularly low and particularly high,

respectively. Light shaded areas in the top panel indicate U.S. recession periods according to NBER.
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3. The three bottom panels of Figure 4 cut the three-dimensional plots into slices along

the time dimension, at 0.5%, 1%, and 2% of overall financial sector firms. For example, in

the E.U. area at the end of the sample, the probability of failure of at least 1% of financial

sector firms (it is at least four firms of average size, out of roughly four hundred firms in the

Moody’s database), at coincident levels of stress, is around 50%. This is a substantial risk.

Finally, Figure 5 plots financial distress based on indicator (15). The probit transform

in (15) maps model-implied systematic stress into a uniform random variable, such that

its percentiles can be read off from the transformed y-axis. Financial distress is highest

towards the end of the sample (above the 80th percentile), and virtually absent during the

late-1990s and mid-2000s (below the 20th percentile). Bubbles such as the dotcom bubble in
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the late 1990s and the housing bubble from approximately 2005-2007 have started to build

up during such periods of low risk. This is in line with an overall risk buildup that occurs

during (exceptionally) good times when measured risks are low, as suggested by Borio (2010,

2011), Boissay, Collard, and Smets (2013), and Brunnermeier and Sannikov (2013).

4.4 Nowcasts and forecasts of global financial sector stress

In this section we assess the nowcasting and out-of-sample forecasting performance of our

final model specification. Accurate forecasts of financial sector stress are valuable for coun-

terparty credit risk management, conditional stress testing exercises, as well as financial

sector surveillance from a prudential perspective.

Out-of-sample forecasting is one of the most stringent diagnostic checks for any time series

model. We present a truly out-of-sample forecasting study by estimating the parameters of

the model based on data from 1980Q1 to 2007Q4. Nowcasts and forecasts of quarterly

default rates from 2008Q1 to 2012Q2 are computed conditional on these training sample

parameter values. The model-based predictions are

π̂Model, now
r,j,t =

(
1 + e−θ̂Model, now

r,j,t

)−1

,

π̂Model, forc
r,j,t+1 =

(
1 + e−θ̂Model, forc

r,j,t+1

)−1

,

where θ̂Model, now
r,j,t and θ̂Model, forc

r,j,t+1 are based on (9), where risk factors are either filtered factor

estimates ft|t or predicted one-step ahead estimates ft+1|t, respectively.

We consider two main alternatives for nowcasting current-quarter default rates and 1-

quarter ahead forecasting. First, we fit a standard exponentially weighted moving average

(EWMA) to quarterly observed default fractions π̂r,j,t = yr,j,t/kr,j,t,

π̂EWMA, now
r,j,t = απ̂r,j,t + (1− α)π̂EWMA, now

r,j,t−1 ,

π̂EWMA, forc
r,j,t+1 = απ̂r,j,t + (1− α)π̂EWMA, forc

r,j,t ,

where the smoothing parameter α in the EWMA specification is chosen to give the closest

mean squared error fit to the target rate in the training sample. As a second forecasting
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Table 5: Nowcasts and out-of-sample forecasts of regional financial sector stress
We report mean absolute forecast error (MAE) and root mean squared forecast error (RMSE) statistics

associated with nowcasts and out-of-sample forecasts of financial sector systematic default rates for three

economic regions. The estimation sample is from 1980Q1 to 2007Q4; nowcasts and out of sample forecasts

are obtained for the financial crisis period for 18 quarters from 2008Q1 to 2012Q2. nowcasts are obtained

from filtered risk factors, out of sample forecasts are obtained from one-quarter ahead predicted factors.

Error statistic MAE RMSE MAE RMSE

Target probability / rate: full model smoothed EDF large financials

US fin Model nowcast 0.024% 0.026% 0.610% 0.786%
Model nowcast as forecast 0.108% 0.133% 0.623% 0.844%
Model forecast 1q ahead 0.023% 0.026% 0.610% 0.786%
EWMA nowcast 0.286% 0.323% 0.912% 1.126%
EWMA forecast 0.327% 0.363% 0.953% 1.165%
EDF-based forecast 0.632% 0.811%

EU fin Model nowcast 0.004% 0.007% 0.511% 0.711%
Model nowcast as forecast 0.043% 0.077% 0.538% 0.761%
Model forecast 1q ahead 0.005% 0.008% 0.510% 0.710%
EWMA nowcast 0.149% 0.229% 0.664% 0.944%
EWMA forecast 0.143% 0.224% 0.656% 0.938%
EDF-based forecast 0.515% 0.718%

AP fin Model nowcast 0.288% 0.420% 0.589% 0.634%
Model nowcast as forecast 0.380% 0.493% 0.613% 0.761%
Model forecast 1q ahead 0.288% 0.420% 0.590% 0.634%
EWMA nowcast 0.336% 0.398% 1.152% 1.308%
EWMA forecast 0.369% 0.432% 1.190% 1.345%
EDF-based forecast 0.822% 0.916%
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alternative, we consider the current mean expected default frequency (EDF) for large finan-

cial sector firms as a forecast. For this purpose we convert the current annual EDF into a

quarterly rate as

π̂EDF, forc
r,j,t+1 = 1− (1− EDFr,j,t)

1
4 ,

where EDFr,j,t is a one-year ahead default risk estimate.

The measurement of forecasting accuracy of time-varying default probabilities is not

entirely straightforward. Observed default fractions are only a crude measure of default

conditions. We can illustrate this inaccuracy by considering a group of, say, 10 firms. Even

if the default probability is forecast perfectly, it is unlikely to coincide with the observed

default fraction of either 0, 1/10, 2/10, etc. The forecast error may therefore be large but

it does not necessarily indicate a bad forecast. Figure 3 presents two benchmarks that do

not suffer from this drawback. First, we use the model-implied financial sector default rate,

based on the full-sample parameter and risk factor estimates. Second, we consider the mean

EDF rate for large financial institutions as an alternative benchmark rate.

Table 5 summarizes the results from our forecasting study. We concentrate the discussion

on two main findings. First, the model-implied nowcasts (based on filtered risk factors) and

one-quarter ahead out-of-sample forecasts (based on out-of-sample predicted risk factors) are

consistently the entries with the lowest mean absolute error (MAE) and root mean squared

error (RMSE) statistics. Our modeling framework produces more accurate forecasts than

the alternative EWMA-based specification and the EDF-based forecast. This is the case for

the U.S., and also in the European and Asia-Pacific data subsamples. The nowcasts and

forecasts from our model appear to be the most accurate even if forecasts are compared

with EDF rates as benchmark rates instead of model-implied full sample estimated rates.

Second, the out-of-sample forecasts for one-quarter ahead default rates are more accurate

than the nowcasts for the current quarter when they are used to predict default rates one-

quarter ahead. It suggests that the estimated risk factor dynamics capture salient and

robust features of co-movements in financial sector default data over time. Both findings

suggest that combining different data inputs appropriately, improves inference on unobserved
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quantities such as financial sector systematic default risk.

4.5 Credit risk dislocations as a warning signal

Our coincident indicators of the previous section may play useful roles in prudential risk

monitoring. However, coincident indicators are not constructed to anticipate upcoming

crises. The unobserved factor estimates obtained from our model, however, can be used for

the construction of effective measures that may serve as alternative early warning signals.

Our warning signal builds on Duffie, Eckner, Horel, and Saita (2009), Azizpour, Giesecke,

and Schwenkler (2010), Koopman, Lucas and Schwaab (2011, 2012), and Creal et al. (2013)

who all find substantial evidence for a dynamic unobserved risk factor driving U.S. firm

defaults above and beyond what is implied by observed macro-financial covariates and other

information. We interpret the credit risk specific or frailty factor as largely capturing un-

observed variation in credit supply, or changes in the ease of credit access. We rely on two

pieces of evidence for interpretation, as reported in Koopman, Lucas, and Schwaab (2011,

2012). First, frailty tends to load more heavily on financially weaker – and thus more credit

constrained – firms. This appears to hold in general, and in particular during the years

leading up to the financial crisis. Second, our frailty estimates are highly correlated with

ex post reported lending standards, such as the ones obtained from the Senior Loan Officer

Survey (SLO) and as reported in Maddaloni and Peydro (2011). Clearly, credit risks and

credit quantities are related: it is hard to default if firms and households are drowning in

credit. Conversely, even solvent firms may come under stress if credit is rationed at the

economy wide level. As a result, systematic default risk conditions (the default cycle) can

decouple from what is implied by the macro-financial environment (the business cycle).

Tracking credit risk conditions and their deviations from macro-financial fundamentals is

related to the notion of tracking credit quantities (or aggregates) over time. The usefulness

of the private-credit to GDP-ratio as an early warning indicator for costly asset price boom

and busts and systemic banking crises is a recurring finding in the early warning literature;

see, for example, Borio and Drehmann (2009) and Alessi and Detken (2011). We argue
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Figure 6: Latent risk factor estimates
The left and middle panels report the conditional mean estimates of the frailty factor for U.S. and E.U.

corporates, respectively. The right panel plots the financial sector specific risk factor. The latter loads on

financial firms in all regions. The approximate standard error bands are plotted at a 95% confidence level

and refer to the full sample estimates. The reported factor estimates are from 1990Q1-2012Q2 because data

up to 1990 is sparse. Filtered factor estimates are plotted for comparison.
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that credit quantities and credit risk are related - virtually no firm defaults during a serious

lending bubble - and that an analysis of credit risk conditions over time can therefore give

a valuable complementary perspective on credit market activity.

The left panel of Figure 6 presents the estimated frailty factors for the U.S., the European

Union area, and the Asia-Pacific region. For the U.S., frailty effects have been pronounced

during bad times, such as the savings and loan crisis in the U.S. in the late 1980s, leading

up to the 1991 recession. They have also been pronounced in exceptionally good times,

such as the years 2005-07 leading up to the recent financial crisis. In these years, default

conditions are much lower than one would expect based on observed macro and financial
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data. Also, frailty effects are negative and possibly significant. On top of these developments,

our estimate of the financial industry-specific risk factor indicates a particularly benign risk

environment for financial firms during these years leading up to the crisis.

The top and bottom panels of Figure 7 plot ‘credit risk deviations’ (CRD) as specified

in equation (16) for financial and non-financial firms, respectively. The indicator combines

estimated frailty and financial industry effects into a warning signal. The indicator captures

the extent to which local stress in a given industry sector differs from what macro-financial

fundamentals would suggest. The figure compares estimated deviations in the U.S., the E.U.

area, and Asia-Pacific region. Light and dark shaded areas correspond to NBER recession

periods for the U.S. and times of banking crises as identified in Laeven and Valencia (2010),

respectively. The graph is based on filtered risk factor estimates that take into account

information which is available at time t.

We indicate three banking crises in the graphs, two in the U.S. (1988 and 2007-10)

and one in the E.U. area (2008-10). Figure 7 draws signal thresholds at a 90% confidence

level. The figure reveals a particularly large and persistent decoupling of risk conditions

from fundamentals for both financial and non-financial firms preceding the financial crisis

and recession of 2007-2009. Here, risk conditions were significantly and persistently below

what was suggested by fundamentals. Such a development may indicate a lending bubble,

in particular if credit quantity growth is unusually high as well and bank lending standards

are generous (which has been the case). Conversely, the indicator may also signal risk

conditions that are considerably worse than suggested by fundamentals. Examples are the

U.S. conditions during the years 1988-90 leading up to the 1991 recession, and conditions

during 2010 to 2012Q2 in all three regions. For financial firms, the end of the sample marks

the start of the Euro area sovereign debt crisis. These developments may not be captured by

the macro fundamentals and are therefore absorbed by the latent industry factor; see Figure

6. As such, they become part of the credit risk deviations indicator in Figure 7.

We now investigate the usefulness of our credit risk deviations indicator for forward

looking early warning purposes. Table 6 ranks several credit based early warning indicators
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Figure 7: Scaled credit risk deviations (CRD)
We plot filtered deviations of credit risk conditions from macro-financial fundamentals as measured in (16).

“Filtered” means that only information available at time t is used for signal extraction. The top and bottom

charts refer to financial firms’ and ‘non-financial firms’ risk conditions, respectively. Light and dark shaded

areas correspond, respectively, to NBER U.S. recession periods and times of systemic banking crises as

identified in Laeven and Valencia (2010). The indicator is a standard normal variable by construction; the

horizontal lines indicate an approximate 90% confidence interval.
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in terms of their usefulness in predicting credit fueled asset price booms that later bust and

are costly in real terms. The data, definitions, and methodology are identical to Alessi and

Detken (2011). The asset price booms refer to a weighted average of residential property and

equity prices and are based on BIS data. By focusing on such asset prices rather than on

banking stress, we define a boom and bust for a cross section of countries more easily. The

test sample includes 11 European countries (Belgium, Germany, Denmark, Spain, Finland,

France, the U.K., Ireland, the Netherlands, Norway, and Sweden), from 1985Q1 to 2008Q4.

According to our analysis, the global private credit to GDP ratio gap remains the best

indicator for early warning purposes. Economic loss, defined as a preference-weighted average

of type I (missing a crisis) and type II errors (false warning), is lowest for this indicator.

The optimal signal threshold, however, is relatively low, which means that many signals are

issued. Many costly booms are called, but the number of type II errors is also high.

Our credit risk deviations indicators (16) for E.U. and U.S. financial firms come in as a

close second. The optimal signal threshold is higher (90th percentile), which means that less

signals are issued than for the global PC gap. Less booms are called (23% instead of 57%),

but the type II error is also much lower (8% instead of 30%). The noise-to-signal ratios are

lowest for this method and suggest that the indicator is fairly reliable in this sense. Our

credit risk based indicator does better than many alternative credit quantity-based measures,

such as the private credit to GDP ratio gap based on individual countries’ time series, the

loan-to-deposits ratio, and total assets to GDP.

Finally, the pronounced deviations of risk conditions from fundamentals are relatively

robust to variations in the set of explanatory right-hand side variables. For example, Duffie,

Eckner, Horel, and Saita (2009) report that pre-crisis U.S. frailty effects cannot easily be

attributed to omitted standard covariates such as real GDP growth or industrial production,

which have been missing in their analysis. Koopman, Lucas, and Schwaab (2011) include

more than 100 macro-financial covariates in their empirical study of U.S. data, and still

find important frailty effects. As a result, default and business cycle activity appear to

be imperfectly related. The extent to which they have decoupled can be captured by our
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modeling framework and used to flag exceptional credit market developments.

5 Conclusion

We have formulated a nonlinear and partly non-Gaussian panel time series model to inves-

tigate international credit risk and macro linkages. The model has provided the basis of a

novel framework for assessing aggregate financial sector risk. Our estimation methodology

enables us to produce new and straightforward coincident and forward looking indicators of

systematic financial sector risk, which can be used for nowcasting and forecasting financial

sector stress. The dynamic factor structure in the model allows us to address the computa-

tional challenges associated with a large cross sectional dimension of financial firms across

the globe. Furthermore, our approach allows us to combine different sets of panel data in

a single integrated framework. We find that the measurement of credit risk conditions over

time yields an important complementary perspective on credit market activity to the mea-

surement of credit quantities. A decoupling of credit risk conditions from macro-financial

fundamentals may indicate too loose lending standards and too easy credit access. In this

way, it may serve as an early warning signal for prudential policy makers. In an extensive

comparison, the new credit risk related measures compare favorably to other suggested risk

indicators, such as the private credit to GDP gap.
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Appendix A1: estimation via importance sampling

The observation density function of y = (x′1, y
′
1, z

′
1 . . . , x

′
T , y

′
T , z

′
T )

′ can be expressed by the

joint density of y and f = (f ′
1, . . . , f

′
T )

′ where f is integrated out, that is

p(y;ψ) =

∫
p(y, f ;ψ)df =

∫
p(y|f ;ψ)p(f ;ψ)df, (A.1)

where p(y|f ;ψ) is the density of y conditional on f and p(f ;ψ) is the density of f . Importance

sampling refers to the Monte Carlo estimation of p(y;ψ) by sampling f from a Gaussian

importance density g(f |y;ψ). We can express the observation density function p(y;ψ) by

p(y;ψ) =

∫
p(y, f ;ψ)

g(f |y;ψ)
g(f |y;ψ)df = g(y;ψ)

∫
p(y|f ;ψ)
g(y|f ;ψ)

g(f |y;ψ)df. (A.2)

Since f is from a Gaussian density, we have g(f ;ψ) = p(f ;ψ) and g(y;ψ) = g(y, f ;ψ) / g(f |y;ψ).

In case g(f |y;ψ) is close to p(f |y;ψ) and in case simulation from g(f |y;ψ) is feasible, the

Monte Carlo estimator

p̃(y;ψ) = g(y;ψ)M−1

M∑
k=1

p(y|f (k);ψ)

g(y|f (k);ψ)
, f (k) ∼ g(f |y;ψ), (A.3)

is numerically efficient; see Geweke (1989) and Durbin and Koopman (2001).

For a practical implementation, the importance density g(f |y;ψ) can be based on the

linear Gaussian approximating model

yj,t = µj,t + θj,t + εj,t, εj,t ∼ N(0, σ2
j,t), (A.4)

where mean correction µj,t and variance σ2
j,t are determined in such a way that g(f |y;ψ)

is sufficiently close to p(f |y;ψ). It is argued by Shephard and Pitt (1997) and Durbin and

Koopman (1997) that µj,t and σj,t can be uniquely chosen such that the modes of p(f |y;ψ)

and g(f |y;ψ) with respect to f are equal, for a given value of ψ.

To simulate values from the importance density g(f |y;ψ), a simulation smoother can be

applied to the approximating model (A.4); see Durbin and Koopman (Ch. 11, 2001). For a

set of M draws of g(f |y;ψ), the evaluation of (A.3) relies on the computation of p(y|f ;ψ),

g(y|f ;ψ) and g(y;ψ). Density p(y|f ;ψ) is based on (5) and (4), density g(y|f ;ψ) is based
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on the Gaussian density for yj,t − µj,t − θj,t ∼ N(0, σ2
j,t), that is (A.4), and g(y;ψ) can be

computed by the Kalman filter applied to (A.4); see Durbin and Koopman (2001).

The likelihood function can be evaluated for any value of ψ. By keeping the random

numbers fixed, we maximize the likelihood estimator (A.3) with respect to ψ by a numerical

optimization method. Furthermore, we can estimate the latent factors ft via importance

sampling. It can be shown that

E(f |y;ψ) =
∫
f · p(f |y;ψ)df =

∫
f · w(y, f ;ψ)g(f |y;ψ)df∫
w(y, f ;ψ)g(f |y;ψ)df

,

where w(y, f ;ψ) = p(y|f ;ψ)/g(y|f ;ψ). The estimation of f̃t = E(f |y;ψ) and its standard

error st via importance sampling can be achieved by

f̃ =
M∑
k=1

wk · f (k)

/
M∑
k=1

wk, s2t =

(
M∑
k=1

wk · (f (k)
t )2

/
M∑
k=1

wk

)
− f̃ 2

t ,

with wk = p(y|f (k);ψ)/g(y|f (k);ψ), f (k) ∼ g(f |y;ψ), and f̃t is the tth element of f̃ .

Appendix A2: residual diagnostics for default panel

This section reports residual diagnostic checks for the non-Gaussian panel of international

default counts. Pooling over parameters as in (12) and specified in Section 4.1 is restrictive,

but keeps the model tractable and helps in estimating all model parameters and latent factors

from sparse default data. Based on the residual diagnostics from this section, we conclude

that our current parameter specification effectively combines model parsimony with the

ability to test relevant hypotheses given the data at hand.

Similar to Koopman, Lucas, and Schwaab (2011), we define a time series of prediction

errors as

êt =

(∑
r,j

δr,j,t

)−1∑
r,j

δr,j,t (yr,j,t − π̂r,j,tkr,j,t) , (A.5)

where yr,j,t are observed quarterly default counts for firms of cross section j in region r at

time t, kr,j,t are the respective number of firms at risk at the beginning of quarter t, the
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Figure 8: Diagnostic check for filtered and full sample estimates
We report error statistics that are based on filtered (on left hand side) and full sample estimates (right hand

side) of default rates π̂r,j,t. We report, from top to bottom, (a) errors êt over time, (b) a QQ plot of prediction

errors against the normal, (c) an error histogram and density estimate, (d) the error autocorrelation function.
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indicator function δr,j,t is equal to one if kr,j,t > 0 and zero otherwise, and π̂r,j,t is the model-

implied probability of default that corresponds to firms in bin kr,j,t. The failure rates π̂r,j,t

can be computed from filtered or full sample (‘smoothed’) estimates of the latent risk factors.

Figure 8 reports, for filtered estimates on the left hand side and full-sample based es-

timates on the right hand side, (a) the time series of êt over time, (b) a QQ plot of the

residuals against the normal, (c) an error histogram and associated density kernel estimate,

as well as (d) the autocorrelation function (ACF) of errors, respectively. Some larger de-

viations of predicted from observed values occur around the recession periods of 2001 and

2008-09. Overall, the errors are zero on average and roughly standard normally distributed.

The error autocorrelation function suggests that there may be some slight leftover autocor-

relation at the first lag, and possibly at the second lag for squared errors. The magnitude

of the autocorrelation is not large, however. It may come from imposing relatively strict

parameter pooling restrictions for non-financial defaults, which are not the main focus of

this paper. When full sample (smoothed) estimates of the default rates are used to predict

defaults, most of the larger residuals and error autocorrelations disappear. We conclude

that, overall, our model specification and pooling restrictions are an appropriate description

of the common dynamics in the default data.
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