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Abstract

Economics and game theory are replete with examples of parameterized games. We show
that all minimal Nash payo USCOs belonging to the Nash equilibrium correspondence of
a parameterized game with payo functions that are uniformly equicontinuous in players’
action choices with respect to parameters have minimal Nash USCOs that are essentially-
valued as well as connected-valued. We also show that in general for any uniformly
equicontinuous parameterized game, the Nash equilibrium correspondence is the compo-
sition of two correspondences: the graph correspondence of the collective security mapping
and the Ky Fan Correspondence. The graph correspondence, a mapping from the parame-
ter space into Ky Fan sets, encodes the speci cs of the parameterized game being consider,
while the Ky Fan Correspondence (i.e., the KFC), a mapping from Ky Fan sets into Nash
equilibria, is universal and common to all parameterized games. We also show that the
range of the graph correspondence, contained in the hyperspace of Ky Fan sets is a hyper-
space Peano continuum - and is therefore locally connected. This means that for any two
distinct Ky Fan sets contained in the range of graph correspondence there is a continuous
segment in the range of the graph correspondence containing these two distinct Ky Fan
sets as endpoints. Key words and phrases: minimal USCO, uniformly equicontinuous sets
of payo functions, essential Nash equilibria, connected sets of Nash equilibria, hyper-
spaces of Ky Fan sets, Nikaido and Isoda functions, quasi-minimal USCOs, 3M mappings,
KFC correspondences, dense selections, Peano continua, locally connected continua.
JEL Classi cation: C7



1 Introduction
Economics and game theory are replete with examples of parameterized games. One of
the most interesting examples can be found in the theory of discounted stochastic games
with uncountable state spaces and compact metric action spaces. By Blackwell’s Theorem
(1965) extended to discounted stochastic games, we know that the key to showing that
a discounted stochastic game has a stationary Markov equilibrium is to show that the
parameterized collection of state-contingent, one-shot games underlying the discounted
stochastic game contains an equilibrium state-contingent, one-shot game - that is, a one
shot-game parameterized by an equilibrium vector of state-contingent prices - prices that
players use to value their continued use of a particular stationary Markov strategy. Once
an equilibrium one-shot game has been found, the equilibrium stationary Markov strategy
pro le is gotten by measurably stringing together, state-by-state, the Nash equilibria of
the one-shot games corresponding to this equilibrium vector of valuation functions. The
hard problem is nding the equilibrium vector of valuation functions - or equivalently, the
hard problem is identifying the equilibrium state-contingent one-shot game. This problem
is a xed point problem involving the Nash payo selection correspondence. The problem
is very di cult because the Nash payo selection mapping is neither closed valued nor
convex valued. However, the problem can be solved by approximate xed point methods
provided the upper semicontinuous part of the underlying upper Caratheodory Nash payo
correspondence contains a contractible-valued minimal USCO. This will be the case if
these minimal USCOs take connected, locally connected, and hereditarily unicoherent
values. Here for non-state-contingent parameterized games, we show that all minimal Nash
payo USCOs belonging to a game where the parameterized collection of payo functions
is uniformly equicontinuous in players’ actions have minimal Nash USCOs that are not
only connected-valued, but also essential-valued (in the sense of Fort, 1950, and Jiang,
1962). Thus we show that in the case of uniformly equicontinuous parameterized games,
one of the three conditions required for approximability is automatically satis ed - and for
the one-shot games underlying discounted stochastic games, the uniform equicontinuity
condition is satis ed automatically (see, Nowak and Raghavan, 1992, or Salon, 1998).
We also show that, in general, for any parameterized games, the Nash equilibrium

correspondence is the composition of two correspondences: the graph correspondence of
the collective security mapping and the Ky Fan Correspondence. The graph correspon-
dence, a mapping from the parameter space into Ky Fan sets, encodes the speci cs of the
parameterized game being consider, while the Ky Fan Correspondence (i.e., the KFC), a
mapping from Ky Fan sets into Nash equilibria, is universal and common to all parame-
terized games. We also show that the range of the graph correspondence, contained in
the hyperspace of Ky Fan sets, is a hyperspace Peano continuum - and is therefore locally
connected. This means that for any two distinct Ky Fan sets contained in the range of
graph correspondence there is a continuous segment (a sub-continuum) in the range of
the graph correspondence containing these two distinct Ky Fan sets as endpoints.

2 Parameterized -Person Games: Primitives and As-
sumptions

An -person parameterized game is de ned by the following primitives:

( ( (· ·))) (1)

where
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(1) is a nite set of players consisting of | | = players and each player has
action or strategy set and for each parameter, payo function

( (· ·)) : 1 × · · · × [ ],

where 0.

(2) is the parameter space, a compact metric space that is connected, locally connected,
and (without loss of generality) equipped with the M-convex metric ;

(3) is the space of actions available to player with typical element where is
a compact, convex subset of a locally convex Hausdor topological vector space ,
metrizable for the relative topology inherited from ;

Letting :=
Q

, is the compact, convex subset of all possible action pro les
with typical element = ( ) ;

(4) ( ( )) :=
P

( ( )) is the sum of players’ -payo s where each player
0 payo is evaluated at action pro le ( )where (i) for each player , ( (· ·))
is player 0 -payo function, a continuous function on × with values in
[ ], 0, and where (ii) for each and , ( (· )) is quasiconcave;

Label these assumptions collectively, [A-1].

Let :=
P

be the sum metric on space of action pro les, :=
Q

,
where each metric is M-convex and compatible with the relative topology on in-
herited from .1 Thus, is a M-convex metric on the compact, convex subset of all
possible action pro les, , compatible with the relative product topology inherited from
:=
Q

We will denote by sequential convergence in with respect to the

metric .

Also, let :=
P

be a metric on space of payo pro les, :=
Q

, where
:= [ ] for all and each metric is given by ( 0) := | 0| (i.e., the

absolute value of payo di erences). Each metric, is M-convex and hence the metric
is M-convex.

Finally, let × := + and × := + be the metrics on × and ×
respectively. These metrics are also M-convex, implying that the spaces, ( × × )
and ( × × ), are M-convex, compact metric spaces.

We will call the game for each a -game. Thus, a -game is speci ed by the following
objects:

G := |{z}
player d’s
strategy set

( (· ·))| {z }
player d’s

z-payo function

.

1Because each action space, , is convex (in the classical sense), each is automatically connected.
In addition, because each action space, , is locally convex, each is locally connected. Thus, each
action set is a Peano continuum, and as a consequence, we can equip each with an M-convex metric,

, compatible with the relative topology on inherited from (see Megginson, 1998, and Illanes
and Nadler, 1999).
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3 The Nash USCO for a Collection of -Games
Given parameter and given the pro le of strategy choices made by other players,Q

0 6= 0 (2)

player 0 choice problem is given by

max ( ( )) (3)

3.1 Best Response Mappings

Under assumptions [A-1], player d’s optimization problem (3) has a nonempty compact
set of solutions. Let

( ) := max ( ( )), (4)

be player 0 optimal payo function, and let

( ) := { : ( ( )) ( )} (5)

be player 0 best response correspondence. It follows from The Berge Maximum Theorem
(1962), that (· ·) is continuous on × and that for each the joint best response
correspondence,

( ) :=
Q

( ) (6)

is a - -upper semicontinuous mapping with nonempty, -compact values.2 As in
the literature (e.g., Hola-Holy, 2009), we call such a mapping an USCO. We will denote
by

U( ( )) (7)

the collection of all such USCOs. Here, ( ) denotes the collection of all nonempty,
-closed, and convex subsets of := 1 × · · · × . Thus, for each , the best

response correspondence ( ·) is an USCO, i.e.,

( ·) U( ( )) for all .

3.2 Nash USCOs

Our focus will be on the Nash USCO. A Nash equilibrium for the -game,

G := { ( (· ·))} (8)

is a pro le of strategy choices, , such that for each player ,

( ( )) = max ( ( )),

2A correspondence, (·), from into is - -upper semicontinuous at if for every -open
subset of such that

( ) ,

there exists a -neighborhood of such that

( 0) for all 0 .

(·) is - -upper semicontinuous ( - -usc) if it is - -usc at all . (·) is an USCO if it is
(i) - -usc and if (ii) for all , ( ) is a nonempty, —compact subset of .
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or equivalently, a Nash equilibrium is a pro le of strategy choices, , is a xed point
of the best response correspondence,

( ).

The set of all Nash equilibria, N ( ), for -game G is therefore given by the set of all xed
points of the best response correspondence at

N ( ) := { : ( )} (9)

It is well known, and easily shown under assumptions [A-1], that the set-valued mapping,
N ( ), is - -upper semicontinuous with nonempty, -compact values. Thus,

the Nash correspondence (or the Nash mapping), N (·), is also an USCO, but one from
the parameter space with values in ( ), i.e.,

N (·) U - := U( ( )). (10)

Our objective is to show that the Nash USCO for any parameterized game satisfying [A-1]
always contains a minimal USCO taking connected values.

4 A Brief Tour of USCO Mappings

4.1 Basic De nitions

Consider the - -upper semicontinuous set-valued mapping

N (·) : ( )

de ned on taking nonempty, -closed (and hence -compact) values in . Here,
( ) denotes the collection of nonempty, -closed subsets of . Following the

literature (e.g., Crannell, Franz, and LeMasurier, 2005 and Hola and Holy, 2009) call such
a set-valued mapping an USCO and denote by U - := U( ( )) the collection of
all USCOs. Also, denote by N the graph of N (·) U - given by

N := {( ) × : N ( )} .
An USCO (·) U is minimal if (·) U and implies that

= . Denote byM :=M( ( )) the collection of all minimal USCOs.
Each USCO contains at least one minimal USCO (e.g., see Proposition 4.3 in Drewnowski
and Labuda, 1990). Let [N (·)] denote the collection of all minimal USCOs belonging to
N (·) U . Thus,

[N (·)] := © (·) M : Nª .
An USCO, N (·) U , such that

[N (·)] = { (·)} for some (·) U ,

is called a quasi-minimal USCO. Let QM denote the collection of all quasi-minimal
USCOs. Note that for any N (·) U , each minimal USCO belong to N (·) is quasi-
minimal. Thus,

[N (·)] QM .

Finally, given any USCO N (·) U let

(N ) := { : N ( ) = { } for some }

4



denote the set of points in where N (·) is single valued. Because is a compact metric
Baire space and is metrizable (in this case with convex metric ), ifN (·) QM ,
then (N ) is a dense set (see Lemma 7 in Anguelov and Kalenda, 2009).

The following characterization of minimal USCOs will be useful later.

Theorem 1 (A characterization of minimal USCOs, Anguelov and Kalenda, 2009)
Suppose assumptions [A-1] hold. The following statements are equivalent:
(1) (·) is a minimal USCO.
(2) If and are open sets such that ( ) 6= , then there is a
nonempty open subset of such that ( ) .
(3) If is an open set and is a closed set such that ( ) 6= for each

, then ( ) .
(4) There exists a quasi-continuous selection of (·) such that = .3

4.2 USCOs in the Connected Class

Denote by CU := U( ( )) the collection of all USCOs with connected values
(call these USCOs, CUSCOs). Here, ( ) denotes the hyperspace of all nonempty,
-closed, and connected subsets of . We say that the USCO N (·) U is in the

connected class if
[N (·)] CU 6= .

Thus, if N (·) is in the connected class, the correspondence N (·) has a minimal USCO,
(·) [N (·)] such that for all , ( ) is nonempty, -closed (an hence -compact), and
connected. Thus for all , ( ) is a subcontinuum of .

4.3 Dense Selections and the Limit Point Characterization of
Minimal Nash CUSCOs

Recall that in a topological space a point is isolated if { } = { } for all neighbor-
hoods of . The point is a limit point if for each neighborhood of contains a
point 0 ( 6= ). The following result, characterizing USCOs with dense selections, is an
immediate consequence of Theorem 1 in Beer (1983). In our statement of Beer’s result
we take as given the fact that and are M-convex, compact metric spaces, equipped
with convex metrics and respectively. In fact, Beer’s result requires only that be
a complete separable metric space (i.e., a Polish space) and that be a sigma compact
complete, separable metric space.

Theorem 2 (Beer, 1983)
Suppose [A-1] holds. Let N U - . The following statements are equivalent.
(a) has a dense selection.
(b) N has the following properties:
(b-1) For each the set

{( N ( ))} := {( ) : N ( )}
3A function : is quasicontinuous at 0 if for any 0 there exists a 0 such that inside

the open ball, ( 0), there is contained an open set, , such that for all

( ) ( ( 0)).
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includes at most one isolated point of N ;
(b-2) For each ( ) {( N ( ))}, ( ) is not a limit point of

N\{( N ( ))}
if and only if ( ) is an isolated point of N .

Let = = [0 1] and consider the USCO, U( ( )), given by

( ) =
{0} 0 1

2{0 1} = 1
2{1} 1

2 1

The quasi-continuous function, QC, given by

( ) =

½ {0} 0 1
2{1} 1

2 1

is a dense selection of . Note that has no isolated points. Thus, by Beer’s Dense
Selection Theorem above, for all ( ) , ( ) is a limit point of \{( ( ))}.
For example, the point (12 0) is the limit of the sequence {( 12 1 0)} where for all
, (12

1 0) \{( 12 ( 12))} = \{( 12 0) ( 12 1)}. Thus, is a minimal USCO with
a dense selection. But note that the selection is not continuous - there is no continuous
selection.

Next, consider the USCO, N U( ( )), given by

N ( ) =
{0} 0 1

2
[0 1] = 1

2{1} 1
2 1

The quasi-continuous function, QC, given by

( ) =

½ {0} 0 1
2{1} 1

2 1

is a selection of N , but it is not a dense selection of N , because 6= N . Note that
N has no isolated points. However, points in the interior of the vertical segment of the

graph of N at = 1
2 , for example the point (

1
2

1
2) N , are limit points of {(1 N (1))}

and cannot be gotten as the limits of sequences in N\{(1 N (1))}. Thus, by Beer’s
Theorem, there is no dense selection of N . We note that N is a quasi-minimal USCO
with unique minimal USCO, (i.e., { } = [N ]).

By Theorem 1, under assumptions [A-1], all minimal USCOs have dense selections (see
(1) (4) in Theorem 1 above). Suppose now that (·) is a connected-valued, minimal
USCO belonging to the Nash USCO, N (·), an USCO in the connected class. By Theorem
3.2 and Corollary 3.3 in Hiriart-Urruty (1985), as well as ( ) := ( ) are con-
nected sets. Let be a quasicontinuous dense selection of the minimal Nash CUSCO,
(·). Thus, we have = . Because minimal USCO (·) is connected-valued,
is connected, implying that contains no isolated points. Thus, the set

( 0 ( 0)) :=
©
( 0 0) × : 0 ( 0)

ª
,

called a stalk by Beer (1983), contains no isolated points of , and therefore by Theorem
2 above (also, see Beer, 1983, Theorem 1), ( 0 0) ( 0 ( 0)) if and only if ( 0 0) is a
limit point of \( 0 ( 0)). Thus, any point ( 0 0) contained in the stalk ( 0 ( 0))
is a limit of some sequence of points contained in \( 0 ( 0)) (i.e., each ( 0 0)
( 0 ( 0)) can be approached from the sides - that is, from a sequence in \( 0 ( 0))).
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5 Ky Fan Analysis

5.1 Ky Fan sets and Ky Fan correspondences

Let be a subset of × satisfying the following three properties:

(a) For each , ( ) .
(b) For each , { : ( ) } is closed.
(c) For each , { : ( ) } is convex or empty.

We will call any subset of × satisfying properties (a), (b), and (c) a Ky Fan
set, and we will denote by S the collection of all Ky Fan sets in × . Thus,

S := { × : has properties (a), (b), and (c)} .

Given S, let
( ) := { : ( ) }

and
( ) := { : ( ) }

The section of at , ( ), is the set of positions, , that deter noncooperative defection
, while the section of at , ( ), is the set of noncooperative defections, , deterred
by position . Note that the set in property (c) above is given by

{ : ( ) } := \ ( ).

Also, note that the deterrence mapping, ( ), is an USCO de ned on and taking
values in the hyperspace, ( ), of nonempty, closed subsets of . We will use this
fact to de ne a metric, S on the hyperspace, S, of Ky Fan sets. In particular, for 1

and 2 in S, let
S(

1 2) := sup ( 1( ) 2( )), (11)

where is the Hausdor metric on ( ) induced by the metric . The basic
Theorems about Ky Fan sets are the following:

Theorem 3 (Lemma 3.1, Zhou, Xiang, Yang, 2005 - ZXY05)
Under [A-1](1)-(3) the hyperspace of Ky Fan sets, S, equipped with the metric S is a
complete metric space.

Theorem 4 (Ky Fan, 1961)
Under [A-1](1)-(3), if S, then

( ) := ( ) 6= .

Consider the mapping or correspondence,

( )

de ned on S with values in ( ). We will call this mapping the KFC.
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Theorem 5 (Lemma 3.2, Zhou, Xiang, Yang, 2005 - ZXY05)
Under [A-1](1)-(3), the KFC, ( ), is an S- -USCO from S into ( ).

Let
U S- := U(S ( )).

Let M S- denote the collection of all minimal USCOs, QM S- , the collection of all
quasi-minimal USCOs, and [ (·)] or [ ] the collection of all minimal KFCs belonging to
KFC, (·).

5.2 Minimal Essential Sets and the 3M Property

Let U(S ( )) be any KFC. We begin with the de nitions.

De nition 1 (Essential Sets and Minimal Essential Sets in the Sense of Fort, 1950,
and Jiang, 1962)
We say that a subset, ( 0) ( ) is essential for at 0 S provided that for
any 0, there is a 0 such that the S-open ball of radius about 0 S is such
that if S(

0) S then

( ) ( ( 0)) 6= .

Denote by E( ( 0)) the collection of all essential sets of at 0.

We say that ( 0) ( ) is minimally essential for at 0 S provided no
proper subset of ( 0) is essential for at 0. Denote by E ( ( 0)) the collection of
all minimally essential sets of at 0.

De nition 2 (The 3M Property of USCOs)
We say that a KFC, U S- has the 3M property if, given any Ky Fan set 0 S,
any pair of disjoint closed sets, 1 and 2, and any open ball, S(

0) S, of radius
0 about 0 contained in S, the open ball of Ky Fan sets, S(

0) S, contains
two Ky Fan sets, 1 and 2 such that

( 1) 1 = ,
and

( 2) 2 = ,

then the larger open ball, S(3
0) S contains a third Ky Fan set, 3, such that

( 3) [ 1 2] = .

Conversely, a KFC, (·), fails to satisfy the 3M property, if for some Ky Fan set
0, there exists two disjoint closed sets, 1 and 2, and an open ball, S(

0) S,
containing two Ky Fan sets, 1 and 2 such that

( 1) 1 = ,
and

( 2) 2 = ,

8



but such that
( 3) [ 1 2] 6=

for all S(3
0) S.

Theorem 6 (All KFCs Have the 3M Property)
Suppose [A-1](1)-(3) holds. The following statements are true:
(1) All KFCs,

(·) : S ( )

have the 3M property.
(2) All minimal USCOs belonging to a KFC inherit the 3M property.

Proof: (1): Suppose not. Then for some 0 S, the KFC

(·) : S ( )

is such that there exists a pair of disjoint closed sets, 1 and 2 in , and an open ball,

S(
0 0) S, 0 0, containing two Ky Fan sets, 1 and 2, such that

( 1) 1 = and ( 2) 2 =

but such that for all 3
S(3

0 0) S

( 3) [ 1 2] 6= .

First, given that (·) is an USCO, under [A-1](1)-(3) there are disjoint open sets such
that and ( ) = , = 1 2. Thus,

( 3) [ 1 2] 6= for all 3
S(3

0) S,
implies that

( 3) [ 1 2] 6= for all 3
S(3

0) S
(12)

We will show that (12) leads to a contradiction by constructing a Ky Fan set, S
with S(3

0) such that

( ) [ 1 2] 6= (*),

and such that (*) implies that ( ) 6= for some = 1 and/or 2. Our candidate
for such a set is given by

:=
©
( ) × : [ 1( ) ( 2) ] [ 2( ) ( 1) ]

ª
= [ 1 ( × 2) ] [ 2 ( × 1) ]

(13)

where
( × ) :=

©
( ) × :

ª
We must show that, (a) S, (b) S(3

0), and (c) ( )
£

1 2
¤ 6=

( ) 6= for some = 1 and/or 2

(a) S: Because S, = 1 2, it is easy to see that for each , ( )

9



and that for each , { : ( ) } is closed. It remains to show that for each
,

{ : ( ) }
is convex or empty.

Let 1, then because 1 and 2 are disjoint,

{ : ( ) } = © : ( ) 1
ª

a convex or empty set because 1 S.

Let 2, then because 1 and 2 are disjoint,

{ : ( ) } = © : ( ) 2
ª

a convex or empty set because 2 S.

Let \ 1 2. Then

{ : ( ) }

=
©

: ( ) 1
ª ©

: ( ) 2
ª

the later being the intersection of convex or empty sets. Therefore,

{ : ( ) }
is convex or empty.

(b) S(3
0): We have

= [ 1 ( × 2) ] [ 2 ( × 1) ] (14)

and by the triangle inequality, for each

( 1( ) 2( )) ( 1( ) 0( )) + ( 2( ) 0( )) 2 0

and
( ( ) 0( )) ( ( ) 1( )) + ( 1( ) 0( )).

(15)

We know already that ( 1( ) 0( )) 0. Consider ( ( ) 1( )). We have

( ( ) 1( )) := max
©

( ( ) 1( )) ( 1( ) ( ))
ª

It is easy to check that,

( ( ) 1( )) = sup ( ) ( 1( ))

= sup [ 2( ) ( 1) ] ( 1( ))

sup 2( ) ( 1( )) = ( 2( ) 1( ))

To show that ( 1( ) ( )) ( 1( ) 2( )) observe that

( 1( ) ( )) = sup 1( ) ( ( ))

= sup 1( ) ( [ 1( )\( 2)] [ 2( )\( 1)])

10



Letting 1( ) = [ 1( )\ 2] [ 1( ) 2], we have for all

1( )\ 2

( ( ))

= ( [ 1( )\ 2] [ 2( )\ 1])

( [ 2( )\ 1] [ 2( ) 1])

= ( 2( )).

Moreover, we have for all
1( ) 2

( )

= ( [ 1( )\ 2] [ 2( )\ 1])

= ( [ 2( )\ 1])

and
( 2( ))

= ( [ 2( )\ 1] [ 2( ) 1])

= ( [ 2( )\ 1]).

Thus, for all 1( ),

( ( )) ( 2( ))

implying that ( 1( ) ( )) ( 1( ) 2( )). Together,

( 1( ) ( )) ( 1( ) 2( ))
and

( ( ) 1( )) ( 2( ) 1( ))

imply that
( ( ) 1( )) ( 2( ) 1( )) 2 0

Thus, we have for each

( ( ) 0( )) ( ( ) 1( )) + ( 1( ) 0( ))

( 2( ) 1( )) + ( 1( ) 0( ))

2 0 + 0 = 3 0.

(c) ( )
£

1 2
¤ 6= ( ) 6= for some = 1 and/or 2:

WLOG suppose that ( ) 1. Given the de nition of the KFC, (·), we have
for each , ¡

1( )
¡

2
¢ ¢ ¡

2( )
¡

1
¢ ¢
,
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and because 1, this implies that for each ,

1( )
¡

2
¢
,

and speci cally, that for each ,

1( ) 1. (*)

Thus, given the de nition of the KFC, (·), (*) implies that
( 1) 1,

contradicting the fact that ( 1) 1 = . Thus we must conclude that (·) has the
3M property.

Proof of (2): Let (·) : S 2 be a minimal USCO belong to some KFC (·) and
suppose (·) does not have the 3M property. Then for some 0 S, the minimal USCO

(·) : S ( )

is such that there exists a pair of disjoint closed sets, 1 and 2 in , and an open ball,

S(
0 0) S, 0 0, containing two Ky Fan sets, 1 and 2 in S, such that

( 1) 1 = and ( 2) 2 =

but such that for all 3
S(3

0 0) S

( 3) [ 1 2] 6= .

As in the proof of part (a) above there are disjoint open sets such that and
( ) = , = 1 2. Thus,

( 3) [ 1 2] 6= for all 3
S(3

0 0) S,
implies that

0( 3) [ 1 2] 6= for all 3
S(3

0 0) S
(16)

And as in the proof of part (a) above, we will show that (16) leads to a contradiction by
showing that the Ky Fan set,

:= [ 1 ( × 2) ] [ 2 ( × 1) ] S

with S(3
0 0) and

( ) [ 1 2] 6= ,

implies that ( ) 6= for some = 1 and/or 2.

Suppose then that ( )
£

1 2
¤ 6= implying WLOG that ( ) 1 6= . Let

( ) 1. Given the de nition of the minimal KFC, (·), we have for each ,

( )
¡

1
¡ × 2

¢ ¢ ¡
2

¡ × 1
¢ ¢
,

and because 1, this implies that for each ,

( ) 1
¡ × 2

¢
,
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and speci cally, that for each ,

( ) 1
¡ × 1

¢
. (**)

Thus, given that ( ) 1 we know that for all ,
¡

1( )
¡

2
¢ ¢¡

2( )
¡

1
¢ ¢
. Moreover, given that in addition, 1 we can conclude that in fact,

1( ) 1 for all . Finally, because ( ) 1, the fact that 1( ) 1

for all implies that
( 1) 1,

contradicting the fact that ( 1) 1 = . Thus we must conclude that (·) has the 3M
property. Q.E.D.

5.3 All KFCs Are in the Connected Class

We begin with a Lemma which establishes a fundamental fact about minimal USCOs:
any minimal USCO belonging to a quasi-minimal USCO is minimally essential valued.
Here we state the Lemma for KFCs.

Lemma 7 (Minimal KFCs Belonging to Quasi-Minimal KFCs Are Minimally Essential
Valued)
Suppose assumptions [A-1](1)-(3) hold. Let (·) QM S- with [ (·)] = { (·)} for
some (·) U S- . Then for each S, ( ) E [ ( )].

Proof: Suppose that for some 0 there is some nonempty, closed and proper sub-
set ( 0) of ( 0) with ( 0) E[ ( 0)]. Fix some 0 ( 0)Â ( 0) and let

( 0 ( 0)) be an open enlargement of ( 0) such that 0 ( 0 ( 0)).
Since ( 0) E [ ( 0)] there is a 0 0 such that for all S(

0 0), ( )
( 0 ( 0)) 6= . De ne the mapping (·) as follows:

( ) :=

½
( ) ( 0 ( 0)) S(

0 0)

( ) SÂ S(
0 0).

By Lemma 2(ii) in Anguelov and Kalenda (2009), (·) is an USCO with and
hence . In particular, 0 ( 0), a contradiction. Q.E.D.

As the following example makes clear, the quasi-minimality of the USCO is critical to
the above result.

Example 1 (Quasi-Minimality is Critical)
Let = = [ 1 1] and de ne U - as follows:

( ) :=
{ 1} [ 1 1

2){ 1 1} [ 1
2

1
2 ]{1} (12 1].

13



While the mapping is an USCO is not quasi-minimal.

Next consider the following USCO:

( ) :=
{ 1} [ 1 0)
{ 1 1} = 0
{1} (0 1].

We have [ ] but (0) is not minimally essential for at = 0 because
(0) = { 1 1} but the smaller sets { 1} and {1} are each minimally essential for at
= 0.

The following Theorem establishes a fundamental fact about minimal USCOs: any
minimal USCO corresponding to any KFC mapping is minimally essentially valued - and
therefore all KFCs are in the connected class.

Theorem 8 (The Connection Between a KFC’s Minimal USCOs and Minimal Essential
Sets)
Suppose assumptions [A-1] hold and let (·) be a KFC. If (·) is a minimal USCO
belonging to (·), then the following statements are true:
(1) For each S, ( ) E [ ( )]
(2) For each S, E [ ( )] consists of connected sets.

Proof: (1): Because (·) is a minimal USCO belonging to (·), (·) is quasi-minimal.
Thus (1) follows from the Lemma above.

(2): Suppose not. In particular, suppose that for some e S ( e) E [ ( e)] is
not connected. Then there are two nonempty, compact sets, 1( e) and 2( e), and two
nonempty, disjoint open subsets, 1 and 2, in such that (i) 1( e) 1 and
2( e) 2, and (ii) ( e) = 1( e) 2( e).
Therefore, neither 1( e) nor 2( e) are essential implying that there are two nonempty,
open sets 1 and 2 with

1( e) 1and 2( e) 2

such that for all 0, there exists Ky Fan 1 and 2 in S(
e) such that

( 1) 1 = and ( 2) 2 =

Let 1 = 1 1 and 2 = 2 2. We have 1and 2 disjoint open sets such that
1( e) 1 and 2( e) 2 and for all 0, there exist

1
S(

e) S and 2
S(

e) S

such that
( 1) 1 = and ( 2) 2 = (17)

14



Given that the sets ( ) are compact, under [A-1](1)-(3), there exists open sets 1 and
2 such that for = 1 2,

( e) .

Thus, we have for all 0, S(
e) S such that

( 1)
1
= and ( 2)

2
= (18)

Now we have a contradiction: First, because ( e) is a minimal essential set of ( e) and
because ( e) £

1 2
¤
, there exists a positive number 0 such that for all Ky

Fan sets S(
e) S,

( )
£

1 2
¤ 6= . (19)

But because 0 can be chosen arbitrarily, choosing = 3 , we have by (18) and the
3M property, the existence of a

S(3 3
e) S = S(

e) S

such that
( )

h
1 2

i
= .

Q.E.D.

5.4 Quasi-minimal KFCs and Minimal KFCs

We close this subsection with the following result concerning the relation between quasi-
minimal KFCs and minimal KFCs.

Theorem 9 (Quasi-minimal KFCs and minimal KFCs)
Suppose assumptions [A-1](1)-(3) hold. Let (·) QM S- with [ (·)] = { (·)} for
some (·) U S- . If U S- is such that is a proper subset of , then

= .

Proof: First, suppose that ( 0 0) , but ( 0 0) . Thus, we have
0 ( 0). Because ( 0) is -closed, there is a closed ball, ( 0

0) of su -
ciently small radius 0 0, such that ( 0

0) ( 0) = .

Consider the correspondence, 0 : S , given by

0( ) :=

½
( ) ( 0

0) S(
0)

( ) S\ S(
0).

By Lemma 2(ii) in Anguelov and Kalenda (2009), 0(·) is an USCO provided 0( ) 6=
for all S. To show that this is true, it su ces to show that for some 0 0,

( ) ( 0
0) 6= for all S(

0 0). (20)

Suppose that (20) is false. Thus for each , there exists S(
1 0) such that

( 0 ( )) := min
( )

( 0 ) 0 .
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For each , the closest point ( ) to 0 is at a -distance from 0 greater than
0 . Thus, no point in ( ) is contained in the closed ball ( 0

0). Thus, for
not equal to 0 but arbitrarily close to 0, ( 0 ( )) 0 , but at 0,
( 0 ( 0)) = 0. We will show that this jump discontinuity leads to a contradiction.

First note that because the function ( 0 ·) is -continuous on , for each 0 ( 0)
there exists 0 0 and an -open ball, ( 0 0) such that for all ( 0 0)

( 0 ) ( 0 0) + 0

Thus, we have ( 0) 0 ( 0) ( 0 0) implying via the -compactness of ( 0)
that there are nitely many balls,©

( 0
0) ( 1

1) ( )
ª

covering ( 0), where { 0 1 } ( 0). Given that (·) is USCO, there exists
0 0 such that for all S( 0

0),

( ) =0 ( )

Thus, if S( 0
0) and ( ), then ( ) for some = 0 1 ,

and therefore, we have for all ( )

( 0 ( )) := min
( )

( 0 ) ( 0 ) ( 0 ) + 0 .

Because
( 0 ( 0)) := min

( 0)
( 0 ) = 0

we have for S( 0
0),

( 0 ( )) min
0

( 0 ) + 0 ( 0 ( 0)) + 0 = 0 .

Thus, we have a contradiction and we must conclude that (20) is true for 0 0.
Therefore, 0

0
(·) U S- . Letting be any minimal USCO contained in [ 0

0
], we

have a contradiction: [ ] contains at least two di erent minimal USCO maps, and -
but [ ] = { }. Therefore, we must conclude that = . Q.E.D.
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6 Parameterized Games, Ky Fan Sets, and The Ky
Fan Correspondence

In this section, we will bring together the speci cs of the underlying parameterized game
and the Ky Fan correspondence. In particular, we will show that the Nash USCO,

N ( ) corresponding to a parameterized game, G := {G : }, satisfying [A-1]
is a composition of two mappings: the GCS mapping, a - × -continuous mapping,

( ), from parameters into Ky Fan sets S, and the KFC mapping, an USCO,
( ), from Ky Fan sets S into Nash equilibria. The GCS mapping encodes all the

information speci c to a particular parameterized game in the game’s Ky Fan sets, while
the KFC - a mapping common to all games - maps these Ky Fan sets into speci c sets of
Nash equilibria. The KFC is a mapping common to all strategic form games, while the
GCS mapping is speci c to a particular parameterized game.

We begin with a discussion of Nikaido-Isoda functions and the graph of collective security
mappings (i.e., the GCS mapping).

6.1 Nikaido-Isoda Functions

With each -game,
G := { ( (· ·))} , (21)

we can associate a Nikaido-Isoda function (Nikaido and Isoda, 1955) given by

( ( )) := ( ( )) ( ( ))

:=
P

( ( ))
P

( ( )).
(22)

Let
F := { ( (· ·)) : } , (23)

denote the collection of Nikaido-Isoda functions associated with the parameterized game,

G := {G : }
Under assumptions [A-1], each function, ( (· ·)) F has the following properties:

(F1) ( (· ·)) is continuous on the compact metric space, × ;

(F2) ( (· )) is quasiconcave in on .

We will add to our list of assumptions [A-1] the following assumption concerning the
collection of Nikaido-Isoda functions, F:

A-1 (5) F is equicontinuous.

For each parameter 0, the corresponding Nikaido-Isoda function, ( 0 (· ·)), is uni-
formly continuous on the compact metric space × . Thus for this 0, we have that
for any 0 a 0 such that for any pair of points, ( ) and ( 0 0) in × at

× -distance apart less than ,
¯̄
( 0 ( )) ( 0 ( 0 0))

¯̄
. If this is true for all

parameter values in , then F is equicontinuous. We note that if

(· (· ·)) is continuous on the compact metric space, × ( × )

then, because (· (· ·)), is uniformly continuous on the compact metric space ×( × ),
F is automatically equicontinuous.

We will denote our augmented list of assumptions, [A-1](1)-(5) by [A-1] .
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6.2 The Game’s Collective Security Mappings and the Set of
Nash Equilibria

Corresponding to each -game’s Nikaido-Isoda function, ( (· ·)), there is the subset of
× given by

( ) := {( ) × : ( ( )) 0} (24)

It is easy to verify that ( ) is a Ky Fan set for each . Moreover, by the Ky Fan Section
Theorem (1961), if we let

( )( ) := { : ( ( )) 0}
then

( )( ) 6= .

Thus,
( )( ) = { : ( ( )) 0 for all }

For each defection pro le , we can construct a set of noncooperative defections
of the form = ( ) - i.e., one for each player . The set ( )( ) is the -closed
set of choice pro les, = ( ), in that are collectively secure against the list of
potential noncooperative defection pro les

= ( ) :=
Q

. (25)

Note that if, given parameter , is contained in ( )( ) for all possible defection pro les
, that is, if

( )( ) (26)

then for each player , = ( ) is secure against any noncooperative defections.
Thus, ( )( ) implies that

( ( )) ( ( )),

for all pairs = ( ) and = ( ) - and conversely. Thus, the set of Nash
equilibria given parameter can be fully characterized as follows:

N ( ) if and only if ( )( ), (27)

and therefore, the Nash USCO is given by,

N ( ) = ( )( )

= { : ( )}
(28)

Our main results regarding the GCS mapping, ( ), are the following:

Theorem 10 (The GCS mapping, (·), is a continuous, Ky Fan Valued mapping)
Let (·) be the GCS mapping for a parameterized game, G := {G : }, satisfying
[A-1] . Then the following statements are true:
(1) (·) is a - S-continuous mapping
(i.e., 0 implies that S( ( ) ( 0)) 0).

(2) For each parameter value , ( ) is a Ky Fan set, i.e.,

( ) S for all .

18



Proof: (1): First, note that

S( ( ) ( 0)) := sup ( ( )( ) ( 0)( ))
where

( )( ) := { : ( ( )) 0} .

Thus, it follows immediately from the assumptions [A-1] and the equicontinuity of the
functions F := { ( (· ·)) : } on the compact metric space × that (·) is -

S-continuous

(2): We have
( ) := {( ) × : ( ( )) 0}

Note that for all , ( ( )) = 0. Thus, property (a) of Ky Fan sets holds for ( ).
By the continuity of ( ( ·)) on , it is easy to see that property (b) holds for ( ).
Finally, to see that property (c) holds observe that because ( (· )) is quasiconcave in
, such that

( ) ( )

is given by the set,
{ : ( ( )) 0},

and this set is convex (or empty). Q.E.D.

Let
C - S( S) (29)

denote the collection of all continuous functions de ned on taking values in S.

In summary, for the collection of -games (i.e., the parameterized game), G := {G : },
satisfying [A-1] , the Nash correspondence is given by

N ( ) = ( ( )) for all , (30)

where the Ky Fan valued GCS mapping, (·) : S, is a - S-continuous on with
values given by

( ) := {( ) × : ( ( )) 0} S for each (31)

and where the KFC, (·) : S ( ), is an USCO with values given by

( ) = { : ( ) } , for each S. (32)

Thus, given the GCS function (·), we have for all

N ( ) = ( ( )) = { : ( ) ( )}

where ( ) S.

Because all minimal USCOs, (·), belonging to a KFC, (·), are connected-valued (i.e.,
are CUSCOs) and because the GCS mapping, (·), belonging to the parameterized game,
G := {G : }, is a Ky Fan valued continuous function, the mapping

( ( ))
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is a minimal CUSCO for the Nash USCO, N (·) (i.e., ( (·)) [N (·)] with connected
values). Thus, we have shown that for any parameterized game, G := {G : },
satisfying [A-1] with Nash mapping, N (·), GCS mapping, (·), and KFC, (·),

( (·)) [N (·)] CU( ( )),

But we can say much more: We have shown that each KFC and all of its minimal KFCs
are 3M and that, as a consequence, each minimal USCO contained in a KFC has con-
nected values that are minimally essential for that minimal USCO. Because the GCS
mapping, (·), is continuous with Ky Fan values, ( ) S for all , the induced USCO,

( ( )) also has minimally essential, connected values - ( (·)) is minimally
essential valued for itself because it is minimal (and hence quasi-minimal) on . What
we conclude from all of this is that if (·) [ (·)] (i.e., if (·) is a minimal USCO for
the KFC (·)), then ( (·)) [N (·)] (i.e., ( (·)) is a minimal USCO for the Nash
USCO, N (·), via the continuous GCS mapping, (·), belonging to the parameterized
game G := {G : }). Formally, we have the following result.

Theorem 11 (Minimal KFCs and Minimal Nash USCOs)
Suppose the parameterized game, G := {G : }, satis es assumption [A-1] with
corresponding Nash USCO N (·) = ( (·)) where

(·) U3 (S ( ))

is the KFC and
(·) C - S( S)

is the GCS function. Then, for each (·) [ (·)],
( (·)) [N (·)].

6.3 Observations

Let
( ) := ( )

denote the range of the GCS function, ( ), from parameters, , into Ky Fan sets,
S. Because is -compact and (·) is - S-continuous, ( ) is S-compact. More-
over, because is locally connected, ( ) is locally connected - and because ( ) is also
connected, ( ) is a Peano continuum. Therefore, we can assume without loss of gener-
ality that the sub-hyperspace of Ky Fan sets, ( ), speci c to a particular parameterized
game,

G := {G : }
can be equipped with an M-convex metric, ( ) equivalent to the metric S restricted
to ( ). Thus, for any two distinct Ky Fan sets 1 and 2 in ( ) there is a third Ky
Fan set ( ) such that

( )(
1 2) = ( )(

1 ) + ( )(
2).

Moreover, by Theorem 2.7 in Nadler (1977) for any two distinct Ky Fan sets 1 and 2 in
( ) there is a subset ( ) S such that 1 and 2 where is isometric

to the interval [0 ( )(
1 2)] and such that if 1 = 2 then = { 1} = { 2} and if

1 6= 2, then is an arc with end points 1 and 2.
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